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Abstract

This report discusses the navigation capabilities of Spot and the integration of these capabilities
in a ROS package, allowing users to interface Spot with existing ROS packages to extend its
functionality. Previous efforts have allowed Spot to be moved through a ROS interface. However,
they do not enable advanced Spot Autonomy functionality such as automated calibration, graph
navigation and arm picking of objects, which highlight the unique capability of Spot as the first
commercially available quadruped robot. This report describes the software design behind the ROS
package to make programming for Spot more accessible to ROS developers, while evaluating the
navigation capabilities of Spot. The native navigation stack of the Spot robot was evaluated to be
competitive with the ROS navigation stack and RTAB-Map, performing similarly in a real-world task
of navigating to a button and pressing it with the arm. The ROS package produced in this report
facilitates future application of the Spot robot by making it more accessible to ROS developers,
while maintaining full functionality of the manufacturer’s SDK.
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1 Introduction

1.1 Background

In June 2020, Boston Dynamics released the Spot robot for commercial sale [1]. This robot was
groundbreaking, being the first commercially available quadruped robot that could traverse rough terrain
autonomously. Unlike other robotics platforms, it is designed to work in uncontrolled environments,
and brings new capabilities such as climbing stairs, stepping over obstacles, and opening doors
with its 6-degree of freedom arm. Industry took an interest in the robot, aiming to use it for
documenting construction progress, monitoring hazardous areas such as power plants, and providing
general situational awareness in remote environments.

As an example, the construction industry spends roughly 4% of contract value in correcting construction
faults alone [2]; a large proportion compared to the typical profit margin for a construction company
of 4% [3]. Additionally, the UK Atomic Energy Agency purchased Spot for use in hazardous radiation
environments [4]. This shows the commercial potential of Spot in robotics automation.

In order to support the adoption of this new generation of quadruped robotics platform, an easy to
use software package should be made available. Boston Dynamics provides an open-source Python
Application Programming Interface (API) to control the robot within its Spot Software Development
Kit (SDK). However, most robotics software that has been developed in academia make use of the
Robot Operating System (ROS). This makes it difficult for out-of-the-box interoperability with the
robot, requiring custom solutions for every application.

1.2 Objectives

The complexity of writing custom software packages for each use case of the Spot robot makes it
difficult for companies to integrate robots into their work processes. This project aims to create a ROS
software package that encapsulates the functionalities of the Spot SDK, allowing robotics engineers
to make use of existing ROS packages to add functionality to the robot. The main objectives are as
follows:

1. Design a ROS-based wrapper around the Spot SDK, mapping commonly used robotics functions
such as setting the movement velocity, pose of the robot and odometry to ROS standard message
topics. The software package should be open source friendly and utilise unit testing for Continuous
Integration, facilitating collaboration.

2. Integration testing of the ROS wrapper with standard ROS programs to ensure its functionality
on hardware. Benchmark its performance against the manufacturer’s Spot SDK.

3. Create a simple demonstration to showcase the ease of use of the ROS wrapper; integrating with
existing ROS packages such as Simultaneous Localisation and Mapping (SLAM) packages.

1.3 Outline

The report is structured into 7 sections. Chapter 1 provides background on the Spot robot and
discusses the motivation behind the project. Chapter 2 highlights past work that has been done in the
field, as well as theoretical background helpful to robotics software development on the Spot robot.
Chapter 3 discusses the software development approach to writing the ROS package for Spot, and how
it maps to available hardware functionality. Chapter 4 showcases the integration testing of software
and hardware on Spot, benchmarking it against the manufacturer’s Spot SDK. Chapter 5 discusses
potential applications for the ROS package on Spot, delving deeper into a specific application of Spot
for indoor SLAM. Chapter 6 showcases the application on hardware, analysing the results produced
and showcasing its ease of use as opposed to a custom-tailored solution with the manufacturer’s Spot
SDK. Additionally, the navigation capabilities of the robot with the new ROS package is evaluated.
Finally, the conclusions of the project and possible future work are discussed in Chapter 7.
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2 Literature Review

2.1 Spot Robot

Spot is Boston Dynamic’s first commercially available robot. It is a quadruped robot with its own
sensor package for local navigation and obstacle avoidance. The robot is designed to encapsulate low
level functions such as motor control, leg kinematics, collision avoidance, movement and odometry.
This allows users to focus on the high level applications without worrying about hardware and control
details such as the inertial measurement unit for odometry, or PID gains set on the motors for accurate
movement. However, it is still important to understand the theory underlying the robot’s capabilities
in order to understand its strengths and limitations.

The base Spot robot has the following capabilities [5]:

Table 2.1: Spot robot capabilities

Capability Specification

Payload Carry up to 14kg, 150W of DC power available per payload
Sensors 5 stereo depth cameras with 360° field of view, 4m range overall
Battery 90 minute runtime per battery
Mobility Stairs and complex terrain traversal
Movement Max speed of 1.6m/s, max climb angle of 30°, max step height of 300mm
Stair stepping 60cm min width, 45° max pitch, 22cm max step height

There are numerous additional capabilities enabled through software, which this project aims to
make more accessible to users by creating a plug and play ROS package for integration with existing
codebases. The Spot robot that was used in this report is seen in Figure 2.1, and the anatomy of the
robot is shown in Figure 2.2.

Figure 2.1: Spot robot used in this project Figure 2.2: Spot anatomy [6]

2.1.1 Payloads

The robot is able to carry a variety of payloads, both manufacturer recommended and custom payloads.
As seen in Figure 2.1, the robot used in this project is equipped with the Spot Arm [7]. The arm allows
it to interact with its environment in a multitude of ways, including picking up an object, grasping a
door handle and interacting with interfaces not specifically designed for robots, such as buttons and
switches.
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Spot has an API meant to abstract the kinematics of the arm, allowing users to dictate the movement
of the arm using joint angles, or Cartesian frame transformations. This abstracts the motor controls
from the pose of the arm, thus shifting the user’s focus to higher level applications. However, the arm
does not have the same collision avoidance features as the body, due to the lack of depth cameras
installed directly in the arm. Thus, limits have to be set in software to avoid crashing the arm into
obstacles such as overhangs or nearby objects. Additionally, there are pre-defined poses such as ”Stow”,
”Ready” and ”Carry” that provide convenient reference poses to go to before or after performing an
action. The angular limits of each degree of freedom of the Spot arm are shown in Figure 2.3.

Figure 2.3: Spot arm degrees of freedom [7]

The Spot arm has the following capabilities:

Table 2.2: Spot arm capabilities

Capability Specification

Accessories 50W DC power available, gigabit ethernet, camera sync
Sensors 4k RGB camera, Time of Flight sensor
Mobility 6 degrees of freedom
Capacity 11kg lifting, 5kg continuous, 25kg drag capacity on carpet
Gripper 130N peak clamp force, 175mm max aperture

The robot is also equipped with the Enhanced Autonomy Package Version 1 (EAP) [8], the latter of
which comes with a LIDAR sensor that provides enhanced sensing capabilities. This enhances the
navigation capabilities of the robot. The stereo cameras on the base Spot robot have a very limited
range of 4m; sufficient for collision avoidance but not enough range for localisation and mapping
purposes. Additionally, the Spot EAP includes the Spot Core, which is a small computer that allows
users to run custom code that interfaces with the Spot robot, without having to alter the firmware
running on the Spot robot for custom applications. Any intelligence that is added by the user has to
be deployed on the Spot Core.

The Spot EAP has the following capabilities:

Table 2.3: Spot EAP capabilities

Capability Specification

Lidar Velodyne VLP-16, 100m±3cm, 5-20 Hz rotation rate
Field of view ±15° vertical, 2° resolution, 360° horizontal, 0.1− 0.4° resolution
Spot Core i5 Intel 8th Gen CPU, 16GB RAM, 512GB SSD, Ubuntu 18.04 LTS

3



The Velodyne VLP-16 LIDAR sensor has a much further range and higher resolution than the depth
cameras on the Spot robot for environmental sensing. The LIDAR functions by rapidly spinning photon
transmitters and photon detectors to measure the distance to points in its surroundings, generating 3D
point cloud data relative to the reference frame of the sensor [9]. The point cloud data can be combined
with other sensor data such as depth camera data or inertial measurements to generate a map of the
surrounding area, using an algorithm such as Simultaneous Localization and Mapping (SLAM).

Figure 2.4: Velodyne VLP-16 Puck LIDAR [10] Figure 2.5: VLP-16 point cloud output [11]

Of interest is the Spot Core computer configuration. In order to interface with the Spot robot, the
robot has a static IP configuration to forward the relevant TCP/UDP ports from the robot to its
payloads. The Spot Core connects to these ports to send commands to the robot, which requires
careful networking configuration when deploying applications to the Spot Core.

2.1.2 Reference Frames

In order to perceive the environment and move around it, the robot has to translate between reference
frames. For example, to make use of sensor data such as the point cloud generated by the LIDAR, it
has to transform between the sensor frame to the body frame, allowing it to know the relative position
of the body to the environment. A (x, y, z) vector is used to denote the translation between frames, and
a (w, x, y, z) quaternion is used to denote the rotation between frames. As opposed to the traditional
roll, pitch and yaw (ψ, θ, ϕ) representation of rotation, quaternions do not suffer from gimbal lock
[12]. Thus, a (x, y, z) position vector and a (w, x, y, z) quaternion is used to represent transformations
between reference frames.

In the case of the Spot robot, it manages the transformations between reference frames with a
FrameTreeSnapshot. The robot stores the transformation between each frame, such as the vision,
odom and body frame, as a tree with the body frame as the root of the tree. This reduces networking
overhead. For n frames, the robot only has to send O(n) edges instead of O(n2) edges in the case
of a fully connected graph. An example of a FrameTreeSnapshot can be seen in Figure 2.6. In
order to find the transformation between the fiducial and odom frame, it is necessary to traverse
the FrameTreeSnapshot and apply transformations of each edge in the path between the two nodes.
Traversing the graph can be done with either a depth-first search or breadth-first search [13]. In the
Spot SDK, this transformation math has been abstracted by Python magic methods [14] that allow
the transformation objects to be directly multiplied to get the resulting transformation. The root of
the tree can be identified as the only frame with an identity transformation to itself, which is usually
the body frame.

4



Figure 2.6: FrameTreeSnapshot example

During operation of the robot, the joints in motion cause the transformations to vary over time. In
response, the Spot robot dynamic updates the FrameTreeSnapshot over time. It is important to apply
the FrameTreeSnapshot at the correct timestamp to get an accurate pose of the robot in the desired
reference frame.

2.1.3 Quadruped Kinematics

Despite the high level interface for controlling the robot’s movements, it is important to understand
quadruped kinematics to be aware of its limitations. The Spot robot’s dynamics can be described
using forward kinematics and inverse kinematics.

Forward kinematics use the rotations of each joint to calculate the position of each joint relative to the
robot’s body frame. Inverse kinematics calculate the joint rotation required to place the end of the
kinematic chain, in this case the robot’s feet, at the desired position [15]. This allows the robot to
calculate the required rotations of each servo motor to achieve the desired gait.

In the case of the Spot robot, the movement kinematics of the body are completely encapsulated by
the Spot SDK. In regular movement, the only method to change the gait is through the SDK, such
as entering Crawl or Walk modes. In the Choreography API, there is the option to tweak custom
movements that alter the movement of the robot [16]. However, there is no method to manually set
the rotations of each individual actuator. This is likely to prevent the user from commanding the robot
into entering an unstable state that may damage the robot.

2.1.4 Client-Server Architecture

The Spot SDK operates on a client-server architecture, where the Spot robot firmware functions as
a server, with commands being sent to it by clients. Communication is handled with gRPC [17], a
performant Remote Procedure Call framework that allows for simple client-server communication. The
services available on the Spot robot are divided into three groups: Core, Robot and Autonomy, as
seen in Figure 2.7. Core describes the lowest level of the software stack, dealing with authentication,
identification and payload registration. Robot describes the basic commands to interact with the
robot and get the robot state. Autonomy describes the autonomous actions that can be performed
based on pre-recorded or pre-programmed intelligence; the highest level of the software stack. Further
functionality can be made available with the use of payloads mentioned in Section 2.1.1, using the
same software architecture.
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Figure 2.7: High level view of Spot SDK [18] Figure 2.8: Spot network protocol stack [19]

This Client-Server architecture allows for encapsulation of lower level functions of the robot such
as defining the control system for actuator movement, while exposing a high-level API for users to
take control of the robot. gRPC calls can be made in parallel with HTTP/2 on the same network
connection, and the Transmission Control Protocol (TCP) allows for reliable transport, ensuring that
messages sent reach their intended destination. The gRPC server is part of the Spot robot firmware
and cannot be directly modified by the user, thus all programmatic interactions with the robot have to
be handled through client-server requests. This is the foundation of this project.

2.2 Robot Operating System

The Robot Operating System (ROS) is an open-source middleware software suite designed in 2007
by researchers at Stanford University and the Willow Garage [20] It was designed to facilitate code
extraction and reuse from one application to another, across different robotics platforms. Generic
functionality needed by different robots such as coordinate transforms or camera streaming pipelines
could be written once and applied on any robot running ROS.

The fundamental concepts underlying ROS are nodes, messages, topics and services. Nodes are modular
pieces of software that perform specific functionality. They communicate with each other by passing
messages through common topics. In some cases, more complex communication is required. Services
are used in a request-response model, where a node makes a request and the receiving node issues a
response.

2.2.1 Publisher Subscriber Design Pattern

At the core of ROS is the publisher-subscriber design pattern. In order to break down a software
system into nodes, there must be an asynchronous method of communication between nodes to share
data. In the case of ROS, nodes can publish data to a topic through the ROS Master, which manages
the naming and registration of other nodes and services, as well as tracking publishers and subscribers
to topics [21].

Nodes that have the latest data will publish to their respective topics at regular intervals, while nodes
that require data will subscribe to these topics and receive new data as soon as they become available.
This results in a low level of coupling between software nodes [22], allowing software to be written in a
more modular and reusable fashion.

2.2.2 ROS Ecosystem

There are currently two versions of ROS, ROS 1 and ROS 2. ROS 2 was released 8 years after ROS 1,
picking up on lessons learned from ROS 1 while creating a more industry-friendly software package
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that incorporates safety, certification, security and real-time features [23]. This project utilises the last
ROS 1 release, ROS Noetic, for simplicity of development. Existing work to implement ROS on the
Spot robot has been done in ROS 1. Due to the limited scope of this project, the decision was made
to maintain the ROS 1 dependency and focus on adding new functionality to the project that would
make it more user friendly.

Since its inception, ROS has gained widespread popularity, with its packages being downloaded millions
of times [24]. Many open-source packages are available online, providing functionality such as bridging
between ROS message formats and OpenCV, Simultaneous Localisation and Mapping (SLAM), robot
sensor data visualisation and even robot simulation. By using ROS middleware, this project aims to
make integrating the Spot robot with existing functionality more accessible to users.

2.3 ROS for Spot

2.3.1 Existing Work

In the past, there have been two main projects working to get ROS running on the Spot robot, by
Microsoft and Clearpath Robotics. In 2020, Microsoft released a ROS wrapper for Spot [25]. This
software package allowed users to access data from Spot’s sensors and cameras and issue basic movement
and trajectory commands. Since its release, there has been no further development from Microsoft.
In the same year, Clearpath Robotics collaborated with Boston Dynamics to integrate ROS with the
Spot SDK [26]. In 2022, Clearpath Robotics stopped maintenance of the package. Since then, Michal
Staniaszek from the Oxford Robotics Institute has taken over maintenance of the project. This package
is now the main method of deploying ROS on Spot, even being used by researchers at Microsoft.

The current state of the package includes functionality for basic movement and trajectory commands,
arm trajectory commands, velocity and movement safety limits, autonomous docking and self-righting.
However, the original software design from Clearpath Robotics persists, using a monolithic software
architecture that makes it difficult for collaboration. The source code is organised into two large files,
spot_ros.py and spot_wrapper.py. The former contains ROS callback functions which interface to
the Spot SDK functions in the latter. Functionality across the Core, Robot and Autonomy levels of
the stack are coupled and make it difficult for open-source collaboration, as multiple editing the same
file would cause merge conflicts and slow the development process.

2.3.2 Docker

Docker is a software platform that allows users to package their software with their own dependencies,
containerising applications such that they do not interfere with other containers on the same computer
[27]. Unlike full virtualization, Docker shares the operating system kernel with the host computer,
making it more lightweight that a full virtual machine. Additionally, applications can be tested locally
on a laptop first, before being deployed to the computer payload on the Spot robot.

Deploying custom applications on Spot is best done with Docker to avoid environment conflicts between
applications [28]. On the Spot Core computer, Docker containers are managed using Portainer. This
allows users to set up the the container remotely, ensuring that the correct network ports are forwarded
such that the application can interaction with the Spot SDK on the robot. Once that has been setup,
the robot will be able to run autonomously without manual input from an external computer.

2.4 Open Source Software

In order to extend the longevity and increase the usability of the project, it is important to consider
making the project open-source friendly. Code modularity, community, project management and
testing are key factors in ensuring the success of open-source software projects [29].
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2.4.1 Code Modularity

High code modularity allows contributors to work on different parts of the program [30], without
requiring a deep understanding of the entire software system; only an understanding of the interface
to the core software is required. Successful open-source projects are written in a modular format
and provide opportunities for innovation without adversely impacting the whole project [31]. This
makes it easy to integrate new features as separate modules without introducing bugs to existing code.
Many large companies have found success in writing modular code for their open source projects,
such as Meta with React.js [32] and Google with Chromium [33], both of which are widely used in
industry.

2.4.2 Unit Testing

Testing is crucial for quality control in any project. Open-source projects typically employ both
automated testing and user system testing to catch bugs, before and after release respectively. Unit
testing is one way to catch bugs before new features are released.

Unit tests are used to enforce a contract between code and expected behaviour, whereby the code in
isolation is given a predetermined input and expected to reach a certain state at the end of its runtime.
Tests can be applied at different levels, as described below.

Library unit tests enforce the behaviour of specific functions or classes. They test the behvaiour of an
isolated piece of code with a set of predetermined test cases that cover core and edges cases, asserting
that the output is as expected. In the context of robotics software, this typically includes control
algorithms or driver-related helper functions.

ROS unit tests enforce the correctness of the program’s response to ROS interactions such as publishers,
subscribers, services and actions. This tests the ROS functionality of a single ROS node, using rostest

as a test fixture to automatically set up a ROS master.

ROS integration tests test the functionality of several nodes working together, either in isolation
from the system or as part of wider system integration testing. In the context of robotics software,
integration tests involves testing the communication between different nodes, verifying that sensor data
is being properly processed, or testing the behavior of a robot in a simulated environment.

It is important to ensure that edge cases are being tested so that the system does not exhibit
unexpected behaviour when functioning within the defined scope. There are further levels of testing up
the application stack, such as system integration testing to ensure that the entire system works together
without error, and application testing to ensure that the system works as expected in a deployment
environment.

2.4.3 Continuous Integration (CI)

In order to reduce repetitive work, automated tests can be set up using a continuous integration
pipeline in the cloud. For example, Github offers the Github Actions service, allowing maintainers to
set up customized actions to install and test new versions of code whenever they become available.
This provides immediate feedback to contributors about their code correctness without having to
wait for feedback from the maintainers, which can be slow when they reside in different timezones.
Additionally, changes to the main branch of the project can only be made with a passing CI build,
preventing contributors from unknowingly introducing bugs that later surface as mysterious failures
[34].

8



2.5 Robotics Navigation

The problem of robotics navigation can be broken down into four main categories [35]:

1. Mapping-based navigation

2. Behavior-based navigation

3. Learning-based navigation

4. Communication-based navigation

Mapping-based navigation involves mapping, localization, and path planning. Behavior-based naviga-
tion involves obstacle avoidance, wall following, corridor following, and target seeking. Learning-based
navigation focuses on creating a semantic understanding of the environment and the task to be
performed. Communication-based navigation is most relevant to swarm robots that operate as a
decentralized cluster of robots working together to achieve a common goal. This report focuses on
mapping-based navigation, evaluating the ability of the Spot robot to map and localize itself in the
physical world.

There are a few popular robotics mapping strategies:

1. Feature-based mapping: This strategy identifies salient features in the environment, such as
corners or edges, and uses them to create a map [36].

2. Occupancy grid mapping: This strategy creates a grid-based map that not only represents
whether a cell is occupied or unoccupied but also represents the probability that a cell is occupied
[37].

3. Simultaneous Localization and Mapping (SLAM): This strategy involves creating a map of the
environment while simultaneously localizing the robot within that environment [38]. A popular
class of SLAM algorithm is Graph-SLAM [39], where the robot’s trajectory and poses of world
objects are captured as nodes in a graph, and edges represent the spatial constraint between
nodes.

2.5.1 Simultaneous Localization and Mapping (SLAM)

SLAM is designed for operations in uncertain environments, where the map is unknown or dynamic,
requiring updates during operation [38]. This report focuses on SLAM navigation as it is most similar
to what is implemented on the Spot robot.

Spot utilises a variant of Graph-SLAM for its GraphNav [40] mapping and localization feature. Mapping
occurs when the robot is manually operated and walked around its environment, placing nodes along
its path. Spot uses its sensor and odometry data to generate a point cloud representation of its
environment, and saves the walked path as a graph. It then uses environmental features saved in its
map for localization as it traverses the graph. It is important to note that Spot executes mapping first
during the recorded run, then localization for subsequent runs. The map is not dynamically updated
during operation.
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3 ROS Platform Development

This section discusses the design behind the ROS package that interfaces with the Spot SDK, highlighting
key improvements made over previous work.

3.1 Software Architecture

The overall software architecture of this ROS software package is shown in Figure 3.1. It serves as a
middleware interface between the vendor-specific Spot SDK and the popular ROS framework. The
physical robot hosts all functionality, split between the Spot SDK running on the proprietary computer
in the robot, and the user-specified programs running on the Spot Core computer. The Spot SDK
is used to communicate with vendor-specific payloads such as the Spot Arm. The SpotROS wrapper
is used to interface between the Spot SDK and the ROS Master node, relaying data and commands
between the two. Additional functionality can be added through ROS, either as internal applications
on the Spot Core computer, or on a laptop that is connected to the WiFi access point hosted by the
robot. This allows for additional applications to be deployed on Docker and interfaced with the robot
through ROS.

Figure 3.1: Software architecture of ROS on Spot

3.1.1 Previous Work

The previously designed ROS interface started by Clearpath Robotics [41] uses a monolithic software
design. All functionality is collected in two super-classes (SpotROS and SpotWrapper), representing
the Spot SDK interface and ROS interface respectively. This makes deployment of the software build
system easy, as all required functionality is stored in the same file where it is being used. This type
of design is advantageous in the early stages of development, where minimal planning and effort is
needed to organise the code, reducing initial start-up effort.

The class Unified Modelling Language (UML) diagram can be seen in Figure 3.2. All functions are
stored in two classes, and the level of code coupling between functions within each class is not clear.
The control flow is not clear with this many functions, making testing hard as a bug in one function
may be caused by an error elsewhere. In the long term as more features are added to the software
package, the classes will only grow more complicated and become harder to test and maintain in the
future.
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Figure 3.2: Class diagram of previous work of SpotROS

Furthermore, a monolithic design is difficult for open-source collaboration, where many contributors
can be working on the same part of the project at the same time. In that case, there would be Git
merge conflicts, as two contributors might be concurrently requesting different changes to the same file.
This would need to be resolved manually, increasing development time and effort as well as making
software testing more difficult.

3.1.2 Improvements

The updated design refactors the Spot SDK components in SpotWrapper. Core functionality of the
robot including mobility methods such as powering on the motors, sitting, standing, and taking
images from its onboard cameras are kept in the core SpotWrapper class. Other features with low
coupling to the aforementioned core functionality are split into separate classes, that are instantiated
in the main class. This makes it easier to add additional Spot SDK functionality to the SpotWrapper
class with minimal interference to existing functionality. New features use standardised constructor
arguments robot, logger, robot_params, robot_clients to interface with the Spot SDK clients in
the SpotWrapper class, while providing their own set of methods to actuate the robot. This represents
a separation of concerns between classes, where the SpotROS class handles ROS communication,
the SpotWrapper class handles Spot SDK communication and each feature class handles its own
functionality.
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Figure 3.3: Class diagram of updated work of SpotROS
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3.1.3 Detailed Software Design

Delving deeper into the details of the software package, the features can be classified into four different
types of implementation.

ROS publishers are used to periodically publish data from the Spot SDK to ROS, without requiring an
external trigger. Robot state and sensor data is polled at a constant rate using asynchronous RPC
calls to the robot, then published to ROS. This is executed using AsyncPeriodicQuery tasks, where
the main loop checks whether sufficient time has passed since the last call and triggers the callback to
maintain a constant poll rate. The loop rate is specified to be much faster than the individual task
rates, such that the main loop checks each task multiple times a cycle, maintaining a constant rate
of polling. The main loop rate and task rates are configured with a spot_ros.yaml file as specified
in the ROS launch file used to start the Spot ROS driver. For Spot, this involves sensor data from
its cameras, LIDAR, robot state service, robot metrics service, lease status service and world object
service.

ROS subscribers are used for simple features that do not require feedback when its callback is triggered.
When new data is published to a ROS topic, the subscriber will pass that data to a callback function
to execute a command. For Spot, this involves the /spot/cmd_vel topic to set the movement speed of
the robot, and the /spot/go_to_pose topic to command a trajectory move to a point in the robot’s
odom or vision reference frame.

ROS services are used for simple features that execute in a short period of time and require passing
feedback or results to the client calling the service. When a ROS service is called, the client execution
is blocked until the a result status is sent from the server to the client, ensuring that the service has
reached an end state before allowing the client to call additional services. For Spot, this involves services
such as arm state changes with /spot/arm_stow and safety state changes with /spot/power_on.

Unlike services, ROS actions do not block the client and are asynchronous in nature. The client is
able to pass a goal to an action and continue program execution, then retrieve the result when it is
ready. ROS actions are typically used for longer tasks that involve movement of the robot, such as
/spot/navigate_to and /spot/trajectory that allow it to move to specific locations in a GraphNav
map or odom and vision reference frames respectively.

The full details of each ROS topic and service implemented in this ROS package are available in
Appendix A. Together, they form a complete guide on what Spot SDK functionality is available through
this ROS wrapper.

3.1.4 Application Sequence Diagrams

The sequence diagram for an example application is shown in Figure 3.4. The SpotROS node is started
with a ROS launch file, entering the program by instantiating the SpotROS class and running its main()
function. The SpotWrapper object is then instantiated, creating objects that interact with the Spot
SDK and authenticating with the robot. Next, the ROS publishers, subscribers, action servers and
services are created. The velocity limit is set as a parameter in SpotWrapper, limiting the speed of
movement actions that may be triggered during operation. If the ROS package is configured, it will
automatically claim the robot’s lease, power on the motors and make the robot stand up. This allows
further actions to be performed later. In the main loop of the program, it periodically calls SpotROS
callbacks that retrieve the latest data from the Spot SDK and publish them to the relevant ROS
topics.
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Figure 3.4: Sequence diagram for SpotROS initialisation
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ROS subscribers, actions and services operate on an event-based model, triggering only when they get
updated information or are called by another ROS node. A sequence diagram of a callback triggered
by a ROS service is shown in Figure 3.5. When another ROS node calls the service, it gets the address
of the service node from the ROS Master, then sends a request to it. The SpotROS object in the node
then calls the relevant SpotWrapper method to send a request to the Spot SDK. The success status in
the response is then relayed up the stack as a response to the original ROS request, closing the loop.
The process is similar for ROS subscribers and actions, allowing ROS nodes to function seamlessly
with the Spot SDK thanks to the abstraction provided by this ROS package.

Figure 3.5: Sequence diagram for SpotROS service calls

3.2 Open Source Collaboration

As mentioned in Section 2.4, the key success factors for an open-source software project include code
modularity, community, project management and testing. Efforts to improve code modularity have
been explained in Section 3.1.2, while the testing aspects are explained below.

3.2.1 Unit Testing

To enforce coding standards and code correctness, several levels of testing have been set up in the ROS
package. In this project, the main challenge with testing was isolating components from the Spot SDK.
As seen in Figure 3.4, even the initialisation of the ROS package requires Spot SDK functionality,
which is unavailable in a development environment. Boston Dynamics does not provide a digital twin
or ROS Gazebo simulation of the Spot robot for automated testing. Thus, the Spot SDK interface has
to be mocked for each test that interacts with the Spot SDK in order to remove the testing dependency
on hardware [42]. The different types of unit tests are explored below.

For library-level unit tests, individual functions are tested for correctness with the corresponding inputs
expected during actual operation of the robot. These tests are relatively straightforward, covering
most coupling methods that translate data between the Spot SDK and ROS formats. ROS-level unit
tests have added complexity as they require a ROS Master node to be started as they primarily test
ROS communication and subsequent control flow within the program.

To isolate the ROS package from the Spot SDK during testing, a mock SpotROS class was created.
Callback functions that would have used methods from the SpotWrapper class were stubbed to set and
retrieve data within the class itself, allowing tests to test the ROS communication in isolation from Spot
SDK communication in the SpotWrapper class. In more complex functions, the relevant SpotWrapper
method was stubbed directly to allow testing of the logic of the SpotROS function. Examples of unit
testing applied in this project can be found in Appendix B.
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Lastly, system integration testing was explored. This involves running the robot with a specified
command, and checking its behaviour such that it corresponds to the expected physical behaviour of
the robot. However, automating this type of testing is not feasible without an accurate simulator of
the Spot robot dynamics. The alternative is to dedicate an entire robot and space solely for automated
integration testing, which is extremely expensive. Alternatively, implementing a mock gRPC server
would have allowed testing of the client-server interactions with the Spot SDK but would not have
served the purpose of ensuring that the system works together as a whole. Thus, automated system
integration testing was not implemented in this software package.

3.2.2 Continuous Integration and Continuous Delivery (CI/CD)

For ease of collaboration with other maintainers on cloud-based Git repository services, an automated
testing pipeline has been set up on Github. The CI pipeline can be seen in Figure 3.6. Every
time a change is pushed to a branch in the cloud, the Github Actions runner will set up a Docker
container with the required dependencies, download the updated code, build it with the ROS build
manager catkin_make, run ROS testing with rostest, output the results, then gracefully shutdown
the container.

Figure 3.6: Github Actions CI pipeline

In addition, the new code can be prepared for deployment with an automated pipeline. The CD
pipeline can be seen in Figure 3.7. With the same Github Actions runner, we will prepare a Docker
image. The runner will use a Dockerfile to checkout the latest code branch within the Docker image,
install the required dependencies, build the ROS package, and set up the package to auto-start when
the Docker container is created with ENTRYPOINT. The Docker image is then uploaded to Docker Hub,
where it can be downloaded as a compressed tar archive file to be uploaded to the Spot Core for
deployment later. This streamlines the deployment process, allowing developers to test the latest code
on hardware without going through the repetitive process of manual software delivery.

Figure 3.7: Github Actions CD pipeline
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4 ROS Platform Testing

4.1 Deployment

Of particular interest to the ROS package is the networking setup that allows communication between
the different software modules. For the purposes of testing, the ROS package is executed in a Docker
container on a laptop connected to the Spot robot via its WiFi access point. This simplified networking
as all ROS code is run on the same host, allowing it to automatically find the ROS Master node
without setting up a static IP address for it. The Docker container packages the software environment,
making it easier to transfer the ROS package and its dependencies to the robot later. Deployment on
the Spot Core on board the robot will be explored in Section 6.

Figure 4.1: Hardware deployment of Spot with payloads

4.2 Integration Testing

To validate the correctness and stability of the software package created in Section 3, integration
testing was performed with the actual Spot robot. Each time a new feature was added, the software
was deployed as per Section 4.1. Then, the feature was called through a rosservice or rostopic call,
corresponding to the type of ROS communication used by the feature. The general testing procedure
is shown in Figure 4.2. All testing was conducted with a human operator nearby to ensure that
a safety radius was maintained around the robot at all times. The results were validated against
manufacturer-provided examples to ensure they maintained the original functionality.

Figure 4.2: Integration testing procedure on hardware

In the following sections, detailed testing results are showcased for each feature that was written for
the ROS package.
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4.3 Showcase: Velodyne LIDAR Data

The LIDAR data from the Spot EAP payload can be accessed in two different ways: through the Spot
SDK or through the Ethernet interface of the LIDAR. Accessing the LIDAR directly would interfere
with the existing interaction between the LIDAR and the Spot SDK in the velodyne_service function
[8]. Thus, the decision was made to access the LIDAR data through the Spot SDK’s PointCloudClient,
providing filtered LIDAR data used by Spot’s native odometry system.

During testing the robot was driven around with Autowalk, Spot’s trajectory playback system, to walk
in a recorded path around an indoor hall. This was done to ensure that the LIDAR data polling by
the ROS package did not interfere with the autonomy capabilities of Spot in Autowalk, allowing it to
maintain use of the LIDAR with the ROS package.

In Figure 4.3, the depth camera data on the Spot and the LIDAR data from the ROS package are
shown in RViz, the ROS data visualisation tool. Depth camera data is coloured by proximity, where
warmer colours indicate a lower height in the robot’s body frame. LIDAR data is shown in white. The
long range capabilities of the LIDAR is immediately apparent, having a significantly longer range than
the depth cameras on the Spot robot. Features that are further away were more accurately mapped.
For example, walls were mapped with points in a flat plane, whereas the depth camera data showed
significant noise distorting the point cloud representation of the wall.

(a) Spot walking with EAP package (b) Point cloud data seen in RViz

Figure 4.3: Spot robot with EAP package using LIDAR

Comparing the output data with that observed in existing literature utilising the same LIDAR [11], a
similar level of fidelity was observed, indicating the correctness of the data output from hardware to
the ROS package. Thus, it was remarked the the feature was implemented successfully.

4.4 Showcase: Graph Navigation

The Spot robot has a native localisation and mapping package, named GraphNav. This allows an
operator to manually walk the robot around to record features in its environment, building a map
and placing waypoints along its path. It then connects those waypoints with edges, performs anchor
optimisation and loop closure to allow optimal navigation between waypoints in the future. Once the
map has been saved, Spot can use it to localise itself with respect to environmental features, such as
fiducial markers present along its route.

The GraphNav service was implemented on the Spot robot as a way to playback existing manually
recorded maps and direct it to a desired waypoint in the map. A map recorded using the controller is
shown in Figure 4.4. As the robot walks around the environment, it fuses data from its LIDAR and
depth cameras to generate a feature map of its environment for localization. At regular intervals along
its path, it places waypoints that form a navigation graph. When playing back the GraphNav graph,
the robot can be told to traverse between any two waypoints, using the edges formed when recording
the graph. The ROS interface allows use of the GraphNav playback functionality through ROS services
and action servers, without blocking other functionality such as arm movement during the walk.
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Figure 4.4: Map generated in GraphNav of Alfa 3, Ideon Science Park
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4.5 Showcase: Arm Picking

The Spot arm is able to use its gripper to pick up objects and carry them around. There are two
methods to doing so: by specifying the reference frame of the target in the robot’s body frame, or
by manually selecting a point in a picture from one of its on-board cameras. The first method was
implemented in the ROS package as the simpler method was deemed to be easier to adapt for use.
Higher-level application code could identify the position of the robot separately, before calling this
feature to initiate the actual picking of the target.

During testing, a packet of pocket tissues was used as the target object to be picked. A ROS service call
was made with the target’s reference frame (x, y, z) in the robot’s body frame to initiate the picking
process. The robot opens the gripper, moves the arm into the Carry position, moves towards the
target, attempts to pick the object, then stays in the picked position. The ROS service then returns
with the completion status of the pick. Subsequently, further arm actions can be issued to move the
arm with the object.

(a) Starting from standing position (b) Opening the gripper

(c) Arm in the Carry position (d) Moving towards the target

(e) Picking the object (f) Successful pick

Figure 4.5: Spot robot picking an object

Throughout the process, it is important to note that the picking service requires the ownership lease of
the robot to be claimed, meaning that the robot cannot perform other movement actions throughout
the process. This blocks other actions such as trajectory movement, thus the action has to be cancelled
or run to completion for the robot to execute other tasks. However, non-movement actions such as
requesting camera data can still be performed asynchronously.
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4.6 Showcase: Spot Check Diagnostics

The Spot robot has a native calibration and diagnostics routine that should be regularly run to
ensure that the joint servo motors are running within set parameters. This provides camera, load
cell, kinematic joint, payload and hip range of motion calibration offsets and error states. Boston
Dynamics recommends that this calibration be performed once every 30 days [43]. The ability to run
this diagnostic through ROS automatically would be useful for an operator running a fleet of robots
concurrently.

(a) Testing body pitch (b) Testing body height

(c) Testing body roll (d) Testing hip range of motion

(e) Testing gripper open and close (f) Testing arm base

(g) Testing arm elbow (h) Testing arm wrist

Figure 4.6: Spot check procedure
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5 Platform Application Development

The application aims to evaluate the navigation capabilities of the Spot robot. The two benchmarks
explored are path playback accuracy and mapping accuracy. The former is measured with AprilTag
fiducials to triangulate the ground truth position of the robot, while the latter is compared against the
map produced by an open-source LIDAR and Visual SLAM package, RTAB-Map [44]. Additionally, the
application demonstrates the ease of integration of existing ROS packages with the SpotROS wrapper,
showing how accessible the Spot robot platform is to existing ROS engineers and researchers.

5.1 Software Architecture

The software architecture of the application is shown in Figure 5.1. It builds on the Spot ROS wrapper
architecture in Figure 3.1, adding a ROS node to test localization performance with fiducial tracking
data and an RTAB-Map ROS node for mapping. For debugging purposes, the ROS master is made
available via port forwarding, allowing an external laptop to connect to it and view ROS data through
RViz. All processing is done on the Spot Core carried on the robot, to allow for fully autonomous
functionality without an operator with a laptop nearby. The Docker container is built as part of the
continuous delivery pipeline described in Section 3.2.2, and deployed to the Spot Core. This allows all
dependencies to be shipped with the application software, thus the Spot robot does not need internet
access during operation to download or update dependencies.

Figure 5.1: System architecture of the navigation application

5.2 Hardware Architecture

Additionally, edge processing of SLAM and recording all data produced by the SpotROS wrapper
was found to be pushing the limit of the Spot Core computer. Recording all the data produced
by the SpotROS node was estimated to produce 34GB of data over a 10 minute period, giving a
rough data rate of 56 MB/s. However, the Spot Explorer robot used in this report has limited WiFi
bandwidth, supporting only 2.4Ghz 802.11 b/g/n speeds [45]. This prevents real-time streaming of
all data produced by Spot from the SpotROS package over WiFi to a laptop, hence data logging was
performed directly in the Spot Core, which has a high-throughput Gigabit Ethernet connection to the
robot.
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5.3 Fiducial Localisation

The control flow of the localization ROS node used for the evaluation of the GraphNav localization
capabilities of the Spot robot is shown in Figure 5.2. Fiducial locations are detected with the
WorldObjectService present on the Spot robot, giving the pose of the fiducial in the body reference
frame of the robot. This data is periodically published through SpotROS to the /spot/world_objects
ROS topic at a rate of 5Hz, as defined in the SpotROS node.

Figure 5.2: Fiducial localization ROS node control flow

During the test, the fiducial localization ROS node calls the /spot/navigate_to ROS action to make
the robot traverse the GraphNav graph, from waypoint to waypoint, as seen in Figure 5.3. At each
waypoint, the logging ROS node retrieves the WorldObject data with a ROS subscriber, parses it for
fiducial detections, then saves it to a Python pickle file for offline data analysis. The robot is then
made to walk the graph three times, giving a slightly different estimate of the fiducial pose at each visit.
The variation in the pose of each fiducial at each waypoint is used to evaluate the revisit accuracy of
Spot’s GraphNav navigation service. The code used for the fiducial localization node is provided in
Appendix C.
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Figure 5.3: Fiducial localization ROS node sequence diagram
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5.4 Sensor Fusion Pipeline for SLAM

RTAB-Map utilises odometry data, depth camera data and LIDAR point cloud data to perform
environment mapping. The sensor data pipeline is defined in the launch file used to start the
RTAB-Map node, allowing the user to define any number of camera and LIDAR data sources with
their reference frame transformations relative to the body. The launch file used in this report is
available in Appendix D.1. The sensor fusion pipeline is shown in Figure 5.4. For this report, all
five stereo cameras on the Spot robot (frontleft, frontright, left, right, back) and the Spot EAP
LIDAR were used. It is important to build the RTAB-Map ROS package from source with the
-DRTABMAP_SYNC_MULTI_RGBD=ON CMake flag to enable multi-camera support.

Figure 5.4: RTAB-Map SLAM sensor fusion pipeline

The static transforms between the sensor frames and the body reference frame were obtained from the
/tf_static ROS topic in the SpotROS driver. The transforms for the Spot robot in this project are
available in Appendix D.2. All sensor data was defined in the body reference frame to be consistent
throughout the ROS package. The LIDAR data was provided in the odom reference frame by SpotROS
and had to be transformed into the body frame using a transform from the /tf ROS topic. This
transformation is executed automatically in the RTAB-Map node with the TF2 ROS package. For a
fair comparison between the maps generated by GraphNav and RTAB-Map, only LIDAR and depth
camera data was used for mapping, thus neither package had access to fiducial positions for localization
and loop closure.

5.5 Path Planning and Navigation

The RTAB-Map package outputs its results into the following topics, as seen in Table D.1. The main
output used in this report is the cloud_map for the point cloud reconstruction of the environment and
the grid_map for the occupancy grid generated by walking around the environment. As compared
to the graph output by Spot’s native GraphNav service, the nodes and edges from RTAB-Map will
be placed differently when walked on the same route, thus the graphs themselves will not be used
for comparison. Instead, the point cloud map will be compared for the presence of artifacts such as
distortion and noise, as seen in Section 6. The purpose of this test is to evaluate the reliability of each
navigation stack for a real-world application; finding and navigating to a button in the map.

Using the map generated by the RTAB-Map package, the ROS Navigation move_base package [46]
was used to complete the open-source navigation stack deployed on the Spot robot. The path planning
ROS node takes in frame transformations on the robot, camera and LIDAR sensor data, odometry data
and the occupancy grid map of the environment generated by the RTAB-Map SLAM ROS node.

Within the move_base navigation node, it uses costmaps and planners to plan a path from source to
destination, in the context of the OccupancyGrid map provided to it, as seen in Figure 5.5. Costmaps
represent the domain as cells with a cost value, depending on the current position of the robot and
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their occupancy status. The planner uses this information to plot a path, with the local planner dealing
with short-term trajectory while the global planner focuses on the high-level objective of reaching the
destination. If the planner fails to find a path, the default recovery behaviour defined is to clear out to
a distance of 4 * ~/local_costmap/circumscribed_radius. For this report, the planner chosen is
the default navfn planner in the ROS navigation stack [47].

Figure 5.5: move base path planning pipeline

When deploying RTAB-Map and the ROS navigation package, fiducial detections were fed to the
RTAB-Map package for localization. The same was done for the GraphNav implementation, for a fair
comparison between their reliability in this evaluation, in Section 6.4.3.
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6 Platform Application Testing

6.1 Deployment

The code was deployed in Docker containers running on the Spot Core on-board computer. The Core
hosts a Portainer GUI to allow for easy Docker container management, allowing the user to set up
and start Docker containers from uploaded images, as seen in Figure 6.1. The Docker container was
configured with the following settings:

1. --host-ip 192.168.50.5 --guid <USERNAME> --secret <PASSWORD> 192.168.50.3

where USERNAME and PASSWORD are the Spot robot login credentials

2. Docker “Network” field to host

3. Environmental variables for the SPOT_ARM and SPOT_PASSWORD to set the Spot Arm RViz param-
eter and Spot robot login credentials for the SpotROS driver launch

4. Interactive mode to allow for terminal access once the container has been started

Figure 6.1: Portainer GUI on the Spot Core

6.1.1 Networking Setup

In order to access the ROS Master Node hosted on the Spot ROS package, the Docker container, the
Spot Core and the Spot robot require correct port forwarding configuration. The Spot robot acts as a
WiFi access point and router, mapping external traffic in the 21000− 22000 port range to be forwarded
to the Spot Core. Applications deployed to the Spot Core on Docker use the host networking mode. In
this mode, applications within the container share the same networking namespace as the host, making
all ports accessible under the same IP address [48]. In this setup, any ROS node on the Spot robot
will be able to access the nodes in this Docker container, as they share the same host network.
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6.2 Waypoint Revisit Accuracy

The Spot robot was initially manually controlled to record the GraphNav map, which was automatically
uploaded to the Spot robot after recording finished. The GraphNav map was then downloaded with
the /spot/download_graph ROS Service for future analysis. Next, the robot was made to traverse the
recorded GraphNav graph with the fiducial localization node, as described in Figure 5.3. The robot
would walk from waypoint to waypoint, stopping at each waypoint to collect data. Data of nearby
fiducials’ poses in the body frame of the robot were collected at each waypoint, and compared between
runs to evaluate the revisit accuracy of the GraphNav navigation service on the Spot robot. The test
was ran three times each, for both indoors and outdoors environments at Alfa 3, Ideon Science Park,
Lund, Sweden.

The Mean Variation of fiducial detections over all runs were calculated with Equation 1, taking
the average of the difference between maximum and minimum position values in (x, y, z) of fiducial
detections. This gives an indication of the spread of position of the fiducial relative to the robot’s body,
over all runs conducted.

Mean Variation =
1

n

n∑
i=1

(
max(Xi)−min(Xi)

)
(1)

where n is the total number of detections, Xi is the i-th set of detections, and max(Xi) and min(Xi)
are the maximum and minimum values in the i-th set of detections, respectively.

Additionally, the Mean Variance was calculated, combining the variance of each detection of a fiducial
at a waypoint across runs, defined in Equation 2.

Mean Variance =
1

n

n∑
i=1

Var(Xi) (2)

where Var(Xi) is the variance of the i-th set of detections, referring to the number of waypoints with
a fiducial nearby. The variance of each set of detections is calculated using Equation 3 for variance
across data from all runs.

Var(X) =
1

n− 1

n∑
m=1

(Xm − X̄)2 (3)

where n is the total number of observations in the dataset, referring to the number of runs, Xm is the
detection from the m-th run, and X̄ is the mean of the detections across runs.

Both parameters were used to evaluate the waypoint revisit accuracy of the Spot robot as it follows the
GraphNav map, from waypoint to waypoint. A lower value of mean variation and mean variance would
imply a lower spread in the revisit position, resulting in a higher waypoint revisit accuracy.

6.2.1 Indoor results

The indoor test was carried out with one initialization fiducial for the Spot robot to localize itself to the
start point of the map. There were a total of 19 different AprilTag fiducials placed along the path of
the robot near waypoints in its GraphNav map. The GraphNav map had a total of 101 automatically
placed waypoints, resulting in a total of 107 detections of the placed fiducials as it traversed the path.
An example of an AprilTag fiducial placed near a waypoint is shown in Figure 6.2. AprilTags are
placed at a similar height to Spot’s body, allowing it to detect it with its built-in cameras without
requiring a specific pose to capture the fiducial within its field of view.
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Figure 6.2: AprilTag fiducial near Spot during indoor localization test

Table 6.1: Indoor localization test result statistics

Fiducial Position Mean Variation (m) Variance (m2)

x 0.3343 0.0698
y 0.0623 0.0018
z 0.0178 0.00013

The histogram of fiducial localization variation for all detections across runs are shown in Figure 6.3.
The plot of fiducial localization variation by waypoint in the path is shown in Figure 6.4. It can be
seen that the variation in the y and z position is generally lower than that of x, as the latter two axes
have occasional large spikes in variation. As the test was conducted in a public space with significant
foot traffic, the robot had to sometimes deviate from its path to avoid people. It is likely that the
large variation in position data points was due to this, as the number of data points varying by more
than 0.5m is a small fraction of the total. Upon further inspection into the data, out of the three runs
conducted, only data from Run 2 differed, where there was significant foot traffic and the robot had to
manoeuvre around people in its path.

The variance of the dataset remains very small for both methods of calculation, indicating that the
waypoint revisit accuracy based on fiducial data is precise. The robot was able to follow its path in a
repeatable manner, with minimal deviation unless necessary.
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Figure 6.3: Variation in x, y, z across runs, indoors

Figure 6.4: Variation in x, y, z across runs, by waypoint sequence in path, indoors
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6.2.2 Outdoor results

For the outdoor test, there were a total of 10 different AprilTag fiducials placed along the path of the
robot near waypoints in its GraphNav map. The GraphNav map had a total of 147 automatically
placed waypoints, resulting in a total of 44 detections of the placed fiducials as it traversed the path.
A lower density of waypoints was used due to the sparse environment leaving limited placements for
fiducials that would be visible to the robot. As seen in Figure 6.5, when the Spot robot is in a park,
there are no nearby positions to place a fiducial within 3 meters of the robot, the effective range of its
cameras.

Figure 6.5: Spot robot during localization test in a park

The localization variation statistics of the outdoor run are shown in Table 6.2.

Table 6.2: Outdoor localization test result statistics

Fiducial Position Mean Variation (m) Variance (m2)

x 0.2361 0.03240
y 0.0709 0.00151
z 0.0253 0.00015

The histogram of fiducial localization variation for all detections across all waypoints across runs are
shown in Figure 6.6. The plot of fiducial localization variation by waypoint in the path is shown in
Figure 6.7.

For both the indoor and outdoor datasets, the mean variation in y and z is very low as compared to
the x position. In the reference frame of the Spot robot, this corresponds to objects in directly in front
of the robot. This is likely due to the Spot arm obscuring the viewing angle of the LIDAR, thus Spot
has to rely on its relatively less precise front depth cameras for localization, increasing the variation in
its x-position during waypoint revisits. Comparing to the variance of the indoor dataset, it can be
noted that the outdoor localization has a similar mean variation in position data. When performing
the test outdoors, the density of foot traffic was much lower, thus Spot did not have to manoeuvre
around obstacles in its path as often, allowing it to more accurately follow the recorded path. However,
the environment was more feature sparse, thus feature-based localization would not be as effective.
These two factors have opposite influences on the localization accuracy, thus there was no significant
difference in variance between the indoors and outdoors results.
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Figure 6.6: Variation in x, y, z across runs, outdoors

Figure 6.7: Variation in x, y, z across runs, by waypoint sequence in path, outdoors
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6.3 Indoor Mapping

The point cloud reconstruction of the environment created by GraphNav is shown in Figure 6.8.

Figure 6.8: Point cloud reconstruction produced by GraphNav with generated waypoints
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The 2D grid map created by the RTAB-Map SLAM package, walking the same route, is shown in
Figure 6.9.

Figure 6.9: RTAB-Map indoor grid map with generated waypoints

Comparing the two maps generated by GraphNav and RTAB-Map in Figures 6.8 and 6.9 from the same
input data, a similar level of detail and mapping range can be noted. The maps have been cleaned up
using the Point Cloud Library in ROS and put side-by-side in Figure 6.10 to compare their features. It
can be noted that the GraphNav map is significantly cleaner, as it only performs mapping once in the
manually operated stage, and does not alter the map during operation.

By contrast, the RTAB-Map SLAM output performs mapping and localization simultaneously, adding
onto the existing map even if it has visited the location before. This leads to the loop closure problem,
where the robot is unable to recognise that it has visited the same physical location. This is particularly
evident in the middle of the map produced by RTAB-Map in Figure 6.10, where the same walls have
been mapped twice as separate obstacles. This occurs when the robot walks past once near the start
of its run, and once more towards the end, and is unable to detect that it is at a previously visited
location. This problem can be solved by tuning specific RTAB-Map parameters [49], which will vary
with the type of environment the robot is in.
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Figure 6.10: GraphNav (left) and RTAB-Map (right) mapping output
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6.4 Indoor Path Planning Demonstration

In order to evaluate the performance of the entire navigation stack, it was decided to test an example
task: navigating to a button and pressing it to open a door. The robot performed the following
actions:

1. Map the area beforehand with manual control

2. Start at a known localization

3. Navigate to a manually defined goal location, near the button

4. Extend the arm to a set location. If the goal location has been accurately reached, the arm will
press the button and open the door

This serves as a qualitative indication of the suitability of the each navigation stack in a practical
robotics application.

6.4.1 GraphNav Navigation Service

The GraphNav navigation service was used through SpotROS. The robot was manually driven from
the start to the goal location to generate the GraphNav map. The map was saved and used in the
demonstration ROS application, seen in Appendix E. The robot then performed the tasks described
previously, pressing the button to open the door, as seen in Figure 6.11. Over the six times the
demonstration was run, Spot was successful in pressing the button six out of six times. In all cases,
Spot was able to achieve the correct pose; facing the button directly for the arm to extend and press
the button. However, there was some variation in the y-direction of the pose, resulting in one nearly
missed attempt at pressing the button.

Figure 6.11: GraphNav demo: pressing a button

6.4.2 ROS Navigation Stack

To define the goal location, the move_base goal can be set using the RViz interface with the
2D Nav Goal, as seen in Figure 6.12. Using the 2D Nav Goal tool, the user can click on a point
in the viewport to send a move_base_simple/goal to the move_base package. This will start the path
planning and trigger the robot to move towards the point selected in the map frame. This was used to
test the validity of the map produced by RTAB-Map and the navigation capabilities of Spot with the
ROS navigation stack.
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Figure 6.12: RViz interface with SLAM mapping data

During testing of the ROS Navigation stack for the same task, the robot was able to consistently
navigate to the goal location. However, the success rate of pressing the button heavily depended on
the manually defined goal location in the map reference frame, as the SLAM package would update
the map and it was not immediately apparent where to define the goal location based on the map in
RViz.

6.4.3 Comparing GraphNav and ROS Navigation Stack

Both the GraphNav service and the ROS navigation stack were able to navigate the robot through the
environment and position itself in front of the door opening button. With an appropriate button pose
detection system and arm commands to move to that pose, the robot would be able to reliably press
the button; as the navigation stack ensures that the robot will be within reach of the button at its
destination.

However, while performing the navigation with GraphNav through the ROS package, it was noticed
that the robot stutters in its walk, appearing to suddenly change its trajectory when deviating from
the recorded path. When the same map was run through Autowalk on the controller, Spot’s higher
level navigation interface, the robot was able to traverse the path smoothly. It is possible that there
are some parameters set by Autowalk that allow GraphNav to function smoothly, which could be
investigated in the future development of the ROS package.

Compared to the original Spot SDK, the ROS package enables the use of complex functionality such
as arm movement and autonomy features while GraphNav is active, which was previously not possible
due to licensing limitations around the Autowalk feature of the Spot Explorer robot. This opens up
the possibility of ROS developers mixing and matching features from the Spot robot and their own
ROS packages to efficiently create a complete system to solve challenges specific to their domain. The
application above with the RTAB-Map and ROS navigation stack showcases the interoperability of the
Spot ROS package with open source ROS packages, lowering the barriers to entry of using Spot to
existing ROS developers.
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7 Conclusion and Future Work

7.1 Conclusion

The work carried out in this project has successfully created a ROS wrapper around the Spot SDK
that is open-source friendly, lowering the barriers of entry to collaborators around the world through
the use of open-source software best practices. The ROS package has been extensively tested to be
working on the Spot robot with the Spot SDK v3.2.0, making available basic functionality such as
image capture and movement, in addition to autonomy features such as the GraphNav service and
automated diagnostic checks with Spot Check.

In order to keep up with updates in the Spot SDK, the ROS package has been set up for sustainable open-
source development, with extensive automated unit testing, code modularity and clear documentation.
In the future, if a breaking change were to be introduced in the Spot SDK, users could easily highlight
them and submit their own pull requests to the package to fix them. They would not need to fully
understand the inner workings of the package thanks to the modular software architecture; they would
only need to know the interfaces required to introduce new features or that of existing ones. Moreover,
the combination of explicit documentation, unit tests and commented code with clear names create
several layers of documentation that lower barriers to entry for new users and contributors.

Lastly, the platform application successfully demonstrated the potential use cases for the Spot robot
while validating its strong built-in navigation capabilities. Using the GraphNav service, an operator
could select from a variety of pre-recorded maps to send out Spot robots, performing tasks such as
mapping and data collection, or interacting with physical interfaces through the Spot arm. The main
benefit of using the ROS wrapper would be the ease of integration of existing software already written
on ROS for other platforms, saving the engineering work of re-writing software in the vendor-specific
SDK. As compared to the base Spot Explorer robot and its license, the operator would be able to run
advanced functions such as arm movement and picking up objects, which is not currently possible
without an upgrade to the more expensive Spot Enterprise robot.

7.2 Future work

To capitalise on the work in this project, there are several opportunities for improvement:

1. Add new features to the ROS package as the Spot SDK expands to leverage its integrated
autonomy features.

2. Develop a user-friendly graphical interface to interact with the Spot robot using the ROS package
and RViz, to create a no-code development platform. This would be similar to what Universal
Robots has done with Polyscope [50].

3. Adopt the ROS wrapper to lower barriers to deploying and testing state-of-the-art robotics
research on the Spot robot platform.

4. Utilise the ROS wrapper in industrial applications with other open-source ROS packages, lowering
the cost of industrial R&D in developing Spot for commercial applications.

In conclusion, this project has contributed to the field of robotics software development by creating a
useful ROS package for the Spot robot, making it easier for robotics engineers to integrate the robot
into their work processes. This project opens up the possibility for further research and development in
this area, and we hope that this project serves as a useful resource for future work in this field, while
continuing to be supported by the open-source community.
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[49] Mathieu Labbé. RTAB-Map ROS Advanced Parameter Tuning. Apr. 2023. url: http://wiki.

ros.org/rtabmap_ros/Tutorials/Advanced%20Parameter%20Tuning.
[50] Universal Robots. Program in your language with PolyScope. 2023. url: https://www.universal-

robots.com/products/polyscope/.
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A SpotROS Topics, Services and Actions

Table A.1: ROS services available

Topic Type Description

/spot/claim Trigger Claim the lease
/spot/release Trigger Release the lease
/spot/self right Trigger Flip onto the legs
/spot/sit Trigger Sit the robot
/spot/stand Trigger Stand the robot
/spot/power on Trigger Enable motor power
/spot/power off Trigger Disable motor power
/spot/estop/hard Trigger Trigger the estop immediately
/spot/estop/gentle Trigger Trigger the estop gracefully
/spot/estop/release Trigger Release the estop
/spot/allow motion SetBool Enable or disable motion
/spot/stair mode SetBool Enable or disable stair climbing mode
/spot/locomotion mode SetLocomotion Set locomotion mode
/spot/swing height SetSwingHeight Set swing height mode
/spot/velocity limit SetVelocity Set velocity limit as Twist message
/spot/clear behavior fault ClearBehaviorFault Clear faults by id
/spot/terrain params SetTerrainParams Set ground mu hint and grated surfaces mode
/spot/obstacle params SetObstacleParams Set obstacle avoidance parameters
/spot/posed stand PosedStand Set body height and pose
/spot/list graph ListGraph Get the list of waypoints in the active graph
/spot/download graph DownloadGraph Download the list of waypoints in the active graph
/spot/navigate init NavigateInit Localization with a fiducial in the provided map
/spot/graph close loops GraphCloseLoops Request loop closure in the active graph
/spot/optimize graph anchoring Trigger Request anchor optimization in the active graph
/spot/roll over right Trigger Roll body over to the right
/spot/roll over left Trigger Roll body over to the left
/spot/dock Dock Dock at dock id
/spot/undock Trigger Undock the robot
/spot/docking state GetDockState Get the dock state of the robot
/spot/spot check SpotCheck Run Spot Check self-calibration
/spot/arm stow Trigger Arm stow position
/spot/arm unstow Trigger Arm unstow position
/spot/gripper open Trigger Gripper open position
/spot/gripper close Trigger Gripper close position
/spot/arm carry Trigger Arm carry position
/spot/gripper angle open GripperAngleMove Gripper open to specific angle
/spot/arm joint move ArmJointMovement Arm move to specific angle for each join
/spot/force trajectory ArmForceTrajectory Arm move as a wrench
/spot/gripper pose HandPose Gripper move to Pose in a specific frame
/spot/grasp 3d Grasp3d Execute a pick at a Position in a specific frame
/spot/arm gaze Trigger Arm gaze towards the front, for demonstration
/spot/stop Trigger Stop the robot
/spot/locked stop Trigger Stop the robot and disallow motion
/spot/spot ros/tf2 frames Trigger Get tf2 transformation frames as a FrameGraph
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Table A.2: ROS publishers available

Topic Type Description

/clock rosgraph msgs/Clock ROS simulation time
/diagnostics diagnostic msgs/DiagnosticArray ROS diagnostics
/joint states sensor msgs/JointState Spot joint pose states
/rosout rosgraph msgs/Log Logging messages
/rosout agg rosgraph msgs/Log Logging messages
/spot/body pose/status actionlib msgs/GoalStatusArray Body pose from standing action server
/spot/camera/back/camera info sensor msgs/CameraInfo Spot monochrome fisheye camera info
/spot/camera/back/image sensor msgs/Image Spot monochrome fisheye camera data
/spot/camera/frontleft/camera info sensor msgs/CameraInfo Spot monochrome fisheye camera info
/spot/camera/frontleft/image sensor msgs/Image Spot monochrome fisheye camera data
/spot/camera/frontright/camera info sensor msgs/CameraInfo Spot monochrome fisheye camera info
/spot/camera/frontright/image sensor msgs/Image Spot monochrome fisheye camera data
/spot/camera/hand color/camera info sensor msgs/CameraInfo Spot colour hand camera info
/spot/camera/hand color/image sensor msgs/Image Spot colour hand camera data
/spot/camera/hand mono/camera info sensor msgs/CameraInfo Spot monochrome hand camera info
/spot/camera/hand mono/image sensor msgs/Image Spot monochrome hand camera data
/spot/camera/hand/depth in color/camera info sensor msgs/CameraInfo Spot colour and depth hand camera data
/spot/camera/left/camera info sensor msgs/CameraInfo Spot monochrome fisheye camera info
/spot/camera/left/image sensor msgs/Image Spot monochrome fisheye camera data
/spot/camera/right/camera info sensor msgs/CameraInfo Spot monochrome fisheye camera info
/spot/camera/right/image sensor msgs/Image Spot monochrome fisheye camera data
/spot/depth/back/camera info sensor msgs/CameraInfo Spot depth camera info
/spot/depth/back/image sensor msgs/Image Spot depth camera data
/spot/depth/frontleft/camera info sensor msgs/CameraInfo Spot depth camera info
/spot/depth/frontleft/image sensor msgs/Image Spot depth camera data
/spot/depth/frontright/camera info sensor msgs/CameraInfo Spot depth camera info
/spot/depth/frontright/image sensor msgs/Image Spot depth camera data
/spot/depth/hand/camera info sensor msgs/CameraInfo Spot depth hand camera info
/spot/depth/hand/depth in color sensor msgs/Image Spot depth colour hand camera data
/spot/depth/hand/image sensor msgs/Image Spot depth hand camera data
/spot/depth/left/camera info sensor msgs/CameraInfo Spot depth in visual camera info
/spot/depth/left/image sensor msgs/Image Spot depth in visual camera data
/spot/depth/right/camera info sensor msgs/CameraInfo Spot depth in visual camera info
/spot/depth/right/image sensor msgs/Image Spot depth in visual camera data
/spot/depth/back/depth in visual/camera info sensor msgs/CameraInfo Spot depth in visual camera info
/spot/depth/back/depth in visual sensor msgs/Image Spot depth in visual camera data
/spot/depth/frontleft/depth in visual/camera info sensor msgs/CameraInfo Spot depth in visual camera info
/spot/depth/frontleft/depth in visual sensor msgs/Image Spot depth in visual camera data
/spot/depth/frontright/depth in visual/camera info sensor msgs/CameraInfo Spot depth in visual camera info
/spot/depth/frontright/depth in visual/camera info sensor msgs/Image Spot depth in visual camera data
/spot/depth/left/depth in visual/camera info sensor msgs/CameraInfo Spot depth in visual camera info
/spot/depth/left/depth in visual sensor msgs/Image Spot depth in visual camera data
/spot/depth/right/depth in visual/camera info sensor msgs/CameraInfo Spot depth in visual camera info
/spot/depth/right/depth in visual sensor msgs/Image Spot depth in visual camera data
/spot/dock/status actionlib msgs/GoalStatusArray Spot docking status
/spot/lidar/points sensor msgs/PointCloud2 Spot EAP Velodye VLP-16 LIDAR data
/spot/motion or idle body pose/status actionlib msgs/GoalStatusArray Body pose with movement action server
/spot/navigate to/status actionlib msgs/GoalStatusArray GraphNav navigation action server
/spot/odometry nav msgs/Odometry Spot odometry, ”vision” or ”odom”
/spot/odometry/twist geometry msgs/TwistWithCovarianceStamped Legacy compatibility with /spot/cmd vel
/spot/status/battery states spot msgs/BatteryStateArray Spot status: battery state
/spot/status/behavior faults spot msgs/BehaviorFaultState Spot status: behavior fault
/spot/status/estop spot msgs/EStopStateArray Spot status: emergency stop (estop)
/spot/status/feedback spot msgs/Feedback Spot status: standing, sitting, moving, version
/spot/status/feet spot msgs/FootStateArray Spot status: feet state
/spot/status/leases spot msgs/LeaseArray Spot status: active lease holder
/spot/status/metrics spot msgs/Metrics Spot status: distance and power usage metrics
/spot/status/mobility params spot msgs/MobilityParams Spot status: velocity limit, other parameters
/spot/status/motion allowed std msgs/Bool Spot status: motion enabled status
/spot/status/power state spot msgs/PowerState Spot status: charging, shore power, battery power
/spot/status/system faults spot msgs/SystemFaultState Spot status: system fault
/spot/status/wifi spot msgs/WiFiState Spot status: wifi ESSID, current mode
/spot/trajectory/status actionlib msgs/GoalStatusArray Trajectory pose movement action server
/spot/world objects spot msgs/WorldObjectArray Spot world object detections
/tf tf2 msgs/TFMessage Tranformation frames from TF2 API
/tf static tf2 msgs/TFMessage Tranformation frames from TF2 API
/twist marker server/update visualization msgs/InteractiveMarkerUpdate Legacy compatibility with /spot/cmd vel
/twist marker server/update full visualization msgs/InteractiveMarkerInit Legacy compatibility with /spot/cmd vel
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Table A.3: ROS actions available

Topic Type Description

/spot/navigate to NavigateToAction Go to a GraphNav waypoint
/spot/navigate route NavigateRouteAction Go to a series of GraphNav waypoints
/spot/trajectory TrajectoryAction Move robot to a Pose
/spot/motion or idle body pose PoseBodyAction Rotate body to a pose
/spot/body pose PoseBodyAction Stand and move robot to a Pose
/spot/dock DockAction Dock or undock at a specific dock id
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B Unit Testing Implementation

B.1 Library Unit Tests

An example of testing the ros_helpers.GetWifiFromState helper function, which translates messages
from the Spot format to ROS format. This function does not have any other code dependencies and
does not require ROS, so it is appropriate to test it in isolation.

1 #!/ usr /bin /env python3
2 PKG = ” r o s h e l p e r s ”
3 NAME = ” r o s h e l p e r s t e s t ”
4 SUITE = ” r o s h e l p e r s t e s t . TestSuiteROSHelpers ”
5

6 import un i t t e s t
7

8 import s p o t d r i v e r . r o s h e l p e r s as r o s h e l p e r s
9 from s p o t d r i v e r . spot wrapper import SpotWrapper

10 from goog l e . protobuf import durat ion pb2
11 from bosdyn . api import r obo t s t a t e pb2
12

13

14 class TestSpotWrapper ( SpotWrapper ) :
15 def i n i t ( s e l f ) :
16 pass
17

18 @property
19 def t ime skew ( s e l f ) −> durat ion pb2 . Duration :
20 robot t ime skew = durat ion pb2 . Duration ( seconds=0, nanos=0)
21 return robot t ime skew
22

23

24 class TestGetWifiFromState ( un i t t e s t . TestCase ) :
25 def t e s t g e t w i f i f r om s t a t e ( s e l f ) :
26 s t a t e = robo t s t a t e pb2 . RobotState ( )
27 spot wrapper = TestSpotWrapper ( )
28 i n i t i a l w i f i s t a t e = robo t s t a t e pb2 . WiFiState (
29 current mode=robo t s t a t e pb2 . WiFiState .MODE ACCESS POINT,

e s s i d=” t e s t e s s i d ”
30 )
31 s t a t e . comms states . add ( w i f i s t a t e=i n i t i a l w i f i s t a t e )
32

33 w i f i s t a t e = r o s h e l p e r s . GetWifiFromState ( s ta te , spot wrapper )
34 s e l f . a s s e r tEqua l (
35 w i f i s t a t e . current mode , r obo t s t a t e pb2 . WiFiState .

MODE ACCESS POINT
36 )
37 s e l f . a s s e r tEqua l ( w i f i s t a t e . e s s id , ” t e s t e s s i d ” )
38

39

40 i f name == ” main ” :
41 import r o sun i t
42

43 r o sun i t . unitrun (PKG, NAME, TestGetWifiFromState )
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B.2 ROS Unit Tests

An example of testing the PointCloudCB function used in SpotROS, which is triggered periodically to
publish data from Spot to ROS. It requires ROS to test the full functionality of this function. First,
we set up a mocked version of SpotROS running in another node to run the PointCloudCB function as
if it were in a production environment, with fixed data.

1 #!/ usr /bin /env python3
2 import rospy
3 import typing
4

5 from bosdyn . api import po int c loud pb2
6 from goog l e . protobuf import duration pb2 , timestamp pb2
7

8 from s p o t d r i v e r . s p o t r o s import SpotROS
9 from s p o t d r i v e r . spot wrapper import SpotWrapper

10

11 # Stubbed SpotWrapper c l a s s f o r t e s t i n g
12 class TestSpotWrapper ( SpotWrapper ) :
13 def i n i t ( s e l f ) :
14 s e l f . p o i n t c l oud = [ po int c loud pb2 . PointCloudResponse ( ) ]
15

16 @property
17 def t ime skew ( s e l f ) −> durat ion pb2 . Duration :
18 robot t ime skew = durat ion pb2 . Duration ( seconds=0, nanos=0)
19 return robot t ime skew
20

21 @property
22 def po in t c l oud s ( s e l f ) −> typing . L i s t [ po int c loud pb2 .

PointCloudResponse ] :
23 ”””Return l a t e s t po i n t c l oud data ”””
24 return s e l f . p o i n t c l oud
25

26 @point c louds . s e t t e r
27 def po in t c l oud s (
28 s e l f , po in t c l oud : typing . L i s t [ po in t c loud pb2 . PointCloudResponse

]
29 ) :
30 ””” Set the po i n t c l oud data ”””
31 s e l f . p o i n t c l oud = po in t c l oud
32

33

34 class MockSpotROS :
35 def i n i t ( s e l f ) :
36 s e l f . s p o t r o s = SpotROS ( )
37 s e l f . s p o t r o s . node name = ”mock spot ros ”
38 s e l f . s p o t r o s . spot wrapper = TestSpotWrapper ( )
39

40 def s e t p o i n t c l o ud da t a ( s e l f ) :
41 # Create PointCloudResponse data
42 po in t c l oud data = po int c loud pb2 . PointCloudResponse ( )
43 po in t c l oud data . s t a tu s = po int c loud pb2 . PointCloudResponse .

STATUS OK
44 po in t c l oud = po int c loud pb2 . PointCloud (
45 source=po int c loud pb2 . PointCloudSource (
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46 name=” t e s t p o i n t c l o ud ” ,
47 f rame name sensor=”eap” ,
48 a c qu i s i t i o n t ime=timestamp pb2 . Timestamp ( seconds=1, nanos

=2) ,
49 t rans fo rms snapshot=None ,
50 ) ,
51 num points=3,
52 encoding=po int c loud pb2 . PointCloud .ENCODING XYZ 32F,
53 encoding parameters=None ,
54 data=b”\x00\x00\x80?\x00\x00\x00@\x00\x00\x80@\x00\x00\x80?\

x00\x00\x00@\x00\x00\x80@\x00\x00\x80?\x00\x00\x00@\x00\
x00\x80@” ,

55 )
56 po in t c l oud data . po in t c l oud . CopyFrom( po in t c l oud )
57 s e l f . s p o t r o s . spot wrapper . po i n t c l oud s = [ po in t c l oud data ]
58

59 def main ( s e l f ) :
60 rospy . i n i t n od e ( s e l f . s p o t r o s . node name , anonymous=True )
61 # I n i t i a l i z e v a r i a b l e s f o r t rans forms
62 s e l f . s p o t r o s . mode parent odom tf = ” v i s i o n ”
63 s e l f . s p o t r o s . t f name kinematic odom = ”odom”
64 s e l f . s p o t r o s . t f name raw kinemat ic = ”odom”
65 s e l f . s p o t r o s . t f name vis ion odom = ” v i s i o n ”
66 s e l f . s p o t r o s . t f name raw v i s i on = ” v i s i o n ”
67

68 # Set up the ROS pub l i she r s , sub s c r i b e r s , s e r v i c e s , and ac t i on
s e r v e r s

69 s e l f . s p o t r o s . i n i t i a l i z e p u b l i s h e r s ( )
70 s e l f . s p o t r o s . i n i t i a l i z e s u b s c r i b e r s ( )
71 s e l f . s p o t r o s . i n i t i a l i z e s e r v i c e s ( )
72 s e l f . s p o t r o s . i n i t i a l i z e a c t i o n s e r v e r s ( )
73

74 # Manually s e t robot images data
75 s e l f . s e t p o i n t c l o ud da t a ( )
76

77 # Set running ra t e
78 r a t e = rospy . Rate (50)
79

80 while not rospy . i s shutdown ( ) :
81 # Cal l pub l i sh c a l l b a c k s
82 f o r cal lback name , c a l l b a ck in s e l f . s p o t r o s . c a l l b a c k s . i tems

( ) :
83 ca l l b a ck ( cal lback name )
84

85 r a t e . s l e e p ( )
86

87

88 i f name == ” main ” :
89 run spo t r o s = MockSpotROS ( )
90 run spo t r o s . main ( )

Next, we set up a unittest to subscribe to the /spot/lidar/points topic and ensure that the fixed
data is being passed correctly.
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1 #!/ usr /bin /env python3
2 PKG = ” spo t r o s ”
3 NAME = ” s p o t r o s t e s t ”
4 SUITE = ” s p o t r o s t e s t . TestSuiteSpotROS”
5

6 import un i t t e s t
7 import rospy
8 import time
9

10 from sensor msgs . msg import PointCloud2
11

12

13 class TestPointCloudCB ( un i t t e s t . TestCase ) :
14 def setUp ( s e l f ) :
15 s e l f . data = {}
16

17 def po in t c l oud cb ( s e l f , msg : PointCloud2 ) :
18 s e l f . data [ ” po in t c l oud ” ] = msg
19

20 def check po in t c l oud ( s e l f , po int c loud msg : PointCloud2 ) :
21 # Check that the po int c loud message i s c o r r e c t l y populated
22 s e l f . a s s e r tEqua l ( po int c loud msg . header . f rame id , ”eap” )
23 s e l f . a s s e r tEqua l ( po int c loud msg . header . stamp . secs , 1)
24 s e l f . a s s e r tEqua l ( po int c loud msg . header . stamp . nsecs , 2)
25 s e l f . a s s e r tEqua l ( po int c loud msg . height , 1)
26 s e l f . a s s e r tEqua l ( po int c loud msg . width , 3)
27 s e l f . a s s e r tEqua l ( po int c loud msg . f i e l d s [ 0 ] . name , ”x” )
28 s e l f . a s s e r tEqua l ( po int c loud msg . f i e l d s [ 0 ] . o f f s e t , 0)
29 s e l f . a s s e r tEqua l ( po int c loud msg . f i e l d s [ 0 ] . datatype , 7)
30 s e l f . a s s e r tEqua l ( po int c loud msg . f i e l d s [ 0 ] . count , 1)
31 s e l f . a s s e r tEqua l ( po int c loud msg . f i e l d s [ 1 ] . name , ”y” )
32 s e l f . a s s e r tEqua l ( po int c loud msg . f i e l d s [ 1 ] . o f f s e t , 4)
33 s e l f . a s s e r tEqua l ( po int c loud msg . f i e l d s [ 1 ] . datatype , 7)
34 s e l f . a s s e r tEqua l ( po int c loud msg . f i e l d s [ 1 ] . count , 1)
35 s e l f . a s s e r tEqua l ( po int c loud msg . f i e l d s [ 2 ] . name , ”z” )
36 s e l f . a s s e r tEqua l ( po int c loud msg . f i e l d s [ 2 ] . o f f s e t , 8)
37 s e l f . a s s e r tEqua l ( po int c loud msg . f i e l d s [ 2 ] . datatype , 7)
38 s e l f . a s s e r tEqua l ( po int c loud msg . f i e l d s [ 2 ] . count , 1)
39 s e l f . a s s e r tEqua l ( po int c loud msg . i s b i g end i an , Fa l se )
40 s e l f . a s s e r tEqua l ( po int c loud msg . po in t s t ep , 12)
41 s e l f . a s s e r tEqua l ( po int c loud msg . row step , 36)
42 s e l f . a s s e r tEqua l (
43 po int c loud msg . data ,
44 b”\x00\x00\x80?\x00\x00\x00@\x00\x00\x80@\x00\x00\x80?\x00\

x00\x00@\x00\x00\x80@\x00\x00\x80?\x00\x00\x00@\x00\x00\
x80@” ,

45 )
46 s e l f . a s s e r tEqua l ( po int c loud msg . i s d en s e , True )
47

48 def t e s t p o i n t c l o ud cb ( s e l f ) :
49 s e l f . po in t c l oud = rospy . Subsc r ibe r (
50 ”/ spot / l i d a r / po in t s ” , PointCloud2 , s e l f . po in t c l oud cb
51 )
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52

53 counter = 0
54 while not rospy . i s shutdown ( ) and counter < 10 :
55 time . s l e e p (1 )
56 counter += 1
57

58 # Check that we got a l l the data
59 s e l f . a s se r tTrue ( ” po in t c l oud ” in s e l f . data , ”Point c loud i s empty

” )
60

61 # Check that the data i s va l i d
62 s e l f . che ck po in t c l oud ( s e l f . data [ ” po in t c l oud ” ] )
63

64

65 i f name == ” main ” :
66 print ( ” S ta r t i ng t e s t s ! ” )
67 import r o sun i t
68

69 rospy . i n i t n od e (NAME, anonymous=True )
70 r o sun i t . unitrun (PKG, NAME, TestPointCloudCB )
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C Fiducial Localization

C.1 Fiducial Python Object

1 import typing
2 import numpy as np
3 from geometry msgs .msg import PoseStamped
4

5

6 class F iduc i a l :
7 ”””
8 F iduc i a l c l a s s that s t o r e s the f i d u c i a l in fo rmat ion in standard ROS

geometry msgs/Pose format
9 ”””

10

11 def i n i t (
12 s e l f ,
13 t a g i d : int ,
14 dim x : f l o a t ,
15 dim y : f l o a t ,
16 f i d u c i a l p o s e : PoseStamped ,
17 f i l t e r e d f i d u c i a l p o s e : PoseStamped ,
18 pose cova r i ance : typing . Optional [ typing . L i s t [ f l o a t ] ] = None ,
19 pose covar i ance f r ame : typing . Optional [ s t r ] = None ,
20 ) :
21 # Save v a r i a b l e s to c l a s s
22 s e l f . t a g i d = tag i d
23 s e l f . dim x = dim x
24 s e l f . dim y = dim y
25 s e l f . f i d u c i a l p o s e = f i d u c i a l p o s e
26 s e l f . f i l t e r e d f i d u c i a l p o s e = f i l t e r e d f i d u c i a l p o s e
27 i f pose cova r i ance and pose covar i ance f r ame :
28 s e l f . po s e cova r i ance = pose cova r i ance # Row−major
29 s e l f . po s e covar i ance f r ame = pose covar i ance f r ame
30

31 def d i s t a n c e t o f i d u c i a l ( s e l f , o ther : ” F iduc i a l ” ) :
32 ”””Returns the d i s t anc e between two f i d u c i a l s ”””
33 return np . l i n a l g . norm(
34 np . array (
35 [
36 s e l f . f i d u c i a l p o s e . pose . p o s i t i o n . x ,
37 s e l f . f i d u c i a l p o s e . pose . p o s i t i o n . y ,
38 s e l f . f i d u c i a l p o s e . pose . p o s i t i o n . z ,
39 ]
40 )
41 − np . array (
42 [
43 other . f i d u c i a l p o s e . pose . p o s i t i o n . x ,
44 other . f i d u c i a l p o s e . pose . p o s i t i o n . y ,
45 other . f i d u c i a l p o s e . pose . p o s i t i o n . z ,
46 ]
47 )
48 )
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C.2 SpotNav Localization ROS Node

1 #!/ usr /bin /env python3
2 import typing
3 import p i c k l e
4 import time
5

6 import rospy
7 import a c t i o n l i b
8 from a c t i on l i b msg s .msg import GoalStatus
9 from r o s s e r v i c e import g e t s e r v i c e c l a s s by name

10

11 from std msgs .msg import St r ing
12 from geometry msgs .msg import PoseStamped
13 from spot msgs .msg import WorldObjectArray , WorldObject
14 from spot msgs .msg import Apr i lTagPropert i e s
15 from spot msgs .msg import FrameTreeSnapshot , ParentEdge
16 from spot msgs .msg import NavigateIn i tAct ion , Nav igate In i tGoa l
17 from spot msgs .msg import NavigateToAction , NavigateToGoal
18 from spot msgs . s rv import ListGraphResponse
19 from s t d s r v s . s rv import TriggerRequest
20

21 from f i d u c i a l import F iduc i a l
22

23

24 class SpotNav :
25 def i n i t ( s e l f ) :
26 s e l f . wo r l d ob j e c t s = None
27 s e l f . f i d u c i a l s s e e n : typing . Dict [ int , typing . L i s t [ ” F iduc i a l ” ] ] =

{}
28 s e l f . waypo i n t f i du c i a l : typing . Dict [ s t r , typing . L i s t [ ” F iduc i a l ” ] ]

= {}
29

30 def i n i t i a l i z e s u b s c r i b e r s ( s e l f ) :
31 ””” I n i t i a l i z e ROS sub s c r i b e r s ”””
32 # Create a sub s c r i b e r f o r the / spot / wor l d ob j e c t s t op i c f o r

WorldObjectArray messages
33 s e l f . wo r l d ob j e c t s sub = rospy . Subsc r ibe r (
34 ”/ spot / wor l d ob j e c t s ” , WorldObjectArray , s e l f .

wo r l d ob j e c t s c a l l b a c k
35 )
36

37 def i n i t i a l i z e p u b l i s h e r s ( s e l f ) :
38 ””” I n i t i a l i z e ROS pub l i s h e r s ”””
39 s e l f . reached waypoint pub = rospy . Pub l i she r (
40 ”/ spot /nav/ reached waypoint ” , Str ing , queue s i z e=1
41 )
42

43 def i n i t i a l i z e a c t i o n c l i e n t s ( s e l f ) :
44 ””” I n i t i a l i z e ROS act i on c l i e n t s ”””
45 # Create an ac t i on c l i e n t f o r the / spot / nav i ga t e t o ac t i on
46 s e l f . n a v i g a t e t o c l i e n t = a c t i o n l i b . S impleAct ionCl ient (
47 ”/ spot / nav i ga t e t o ” , NavigateToAction
48 )
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49

50 # Create an ac t i on c l i e n t f o r the / spot / n a v i g a t e i n i t a c t i on
51 s e l f . n a v i g a t e i n i t c l i e n t = a c t i o n l i b . S impleAct ionCl ient (
52 ”/ spot / n a v i g a t e i n i t ” , Nav igate In i tAct ion
53 )
54

55 def wo r l d ob j e c t s c a l l b a c k ( s e l f , msg : WorldObjectArray ) :
56 # Save the message to a c l a s s v a r i ab l e t r a ck ing the f i d u c i a l s in

the message
57 s e l f . wo r l d ob j e c t s : typing . L i s t [ WorldObject ] = msg . wo r l d ob j e c t s
58

59 # I t e r a t e through the f i d u c i a l s in the message , append the x , y , z
coo rd ina t e s to a d i c t i ona ry

60 f o r wor ld ob j e c t in s e l f . wo r l d ob j e c t s :
61 a p r i l t a g : Apr i lTagPropert i e s = wor ld ob j e c t .

a p r i l t a g p r o p e r t i e s
62 l a t e s t s n ap sho t : FrameTreeSnapshot = wor ld ob j e c t .

f r ame t r e e snapsho t
63

64 # Check i f a p r i l t a g i s None
65 i f a p r i l t a g i s None :
66 continue
67

68 # Create the FrameTreeSnapshot as a d i c t i ona ry
69 f r ame t r e e snapsho t : typing . Dict [ s t r , PoseStamped ] = {}
70 f o r ch i ld , parent edge in z ip (
71 l a t e s t s n ap sho t . ch i l d edge s , l a t e s t s n ap sho t . parent edges
72 ) :
73 parent edge t rans fo rm = PoseStamped ( )
74 parent edge t rans fo rm . header . stamp = wor ld ob j e c t .

a c qu i s i t i o n t ime
75 parent edge t rans fo rm . header . f rame id = parent edge .

parent frame name
76 parent edge t rans fo rm . pose = parent edge .

pa r en t t f o rm ch i l d
77

78 f r ame t r e e snapsho t [ c h i l d ] = parent edge t rans fo rm
79

80 a p r i l t a g p o s e = f rame t r e e snapsho t [ f ” f i d u c i a l { a p r i l t a g .
t a g i d }” ]

81 a p r i l t a g p o s e f i l t e r e d = f rame t r e e snapsho t [
82 f ” f i l t e r e d f i d u c i a l { a p r i l t a g . t a g i d }”
83 ]
84

85 # Build the a p r i l t a g in to the F iduc i a l c l a s s
86 f i d u c i a l = F iduc i a l (
87 t a g i d=ap r i l t a g . tag id ,
88 dim x=ap r i l t a g . x ,
89 dim y=ap r i l t a g . y ,
90 f i d u c i a l p o s e=ap r i l t a g po s e ,
91 f i l t e r e d f i d u c i a l p o s e=a p r i l t a g p o s e f i l t e r e d ,
92 pose cova r i ance=ap r i l t a g . d e t e c t i on cova r i anc e ,
93 pose covar i ance f r ame=ap r i l t a g .
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de t e c t i o n c ova r i an c e r e f e r e n c e f r ame ,
94 )
95

96 # Save the f i d u c i a l to the c l a s s v a r i ab l e
97 i f f i d u c i a l . t a g i d in s e l f . f i d u c i a l s s e e n :
98 s e l f . f i d u c i a l s s e e n [ f i d u c i a l . t a g i d ] . append ( f i d u c i a l )
99 else :

100 s e l f . f i d u c i a l s s e e n [ f i d u c i a l . t a g i d ] = [ f i d u c i a l ]
101

102 rospy . logdebug (
103 f ” f i d u c i a l : { f i d u c i a l . t a g i d }\n po s i t i o n x : { f i d u c i a l .

f i d u c i a l p o s e . pose . p o s i t i o n . x : . 2 f }\n
f i l t e r e d p o s i t i o n x : { f i d u c i a l . f i l t e r e d f i d u c i a l p o s e .
pose . p o s i t i o n . x : . 2 f }”

104 )
105

106 def c a l l s e r v i c e ( s e l f , s e rv ice name : s t r , ∗ args , ∗∗kwargs ) :
107 ””” Cal l a s e r v i c e and wait f o r i t to be a v a i l a b l e ”””
108 try :
109 rospy . w a i t f o r s e r v i c e ( serv ice name )
110 s e r v i c e t yp e = ge t s e r v i c e c l a s s by name ( serv ice name )
111 proxy = rospy . Serv iceProxy ( serv ice name , s e r v i c e t yp e )
112 return proxy (∗ args , ∗∗kwargs )
113

114 except rospy . Serv i ceExcept ion as e :
115 rospy . l o g e r r ( ” Se rv i c e c a l l f a i l e d : %s ” % e )
116

117 def walk current graph ( s e l f ) :
118 ”””Walk the cur rent graph in GraphNav”””
119 rospy . l o g i n f o ( ”Walking the cur rent graph” )
120

121 # Cal l the ListGraph s e r v i c e
122 l i s t g r a p h : ListGraphResponse = s e l f . c a l l s e r v i c e ( ”/ spot /

l i s t g r a p h ” )
123 waypoints = l i s t g r a p h . waypo int ids
124

125 # Cal l the / spot / n a v i g a t e i n i t a c t i on
126 n a v i g a t e i n i t g o a l = Navigate In i tGoa l (
127 upload path=”” ,
128 i n i t i a l l o c a l i z a t i o n f i d u c i a l=True ,
129 i n i t i a l l o c a l i z a t i o n w a y p o i n t=”mm” ,
130 )
131 s e l f . n a v i g a t e i n i t c l i e n t . s end goa l ( n a v i g a t e i n i t g o a l )
132 s e l f . n a v i g a t e i n i t c l i e n t . w a i t f o r r e s u l t ( )
133

134 # Check i f the ac t i on succeeded
135 i f s e l f . n a v i g a t e i n i t c l i e n t . g e t s t a t e ( ) == GoalStatus .SUCCEEDED:
136 rospy . l o g i n f o ( ” Nav iga t e In i t a c t i on succeeded ” )
137

138 f o r waypoint in waypoints :
139 # Cal l the / spot / nav i ga t e t o ac t i on
140 nav i g a t e t o g oa l = NavigateToGoal ( nav i ga t e t o=waypoint )
141 s e l f . n a v i g a t e t o c l i e n t . s end goa l ( n av i g a t e t o g oa l )
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142 s e l f . n a v i g a t e t o c l i e n t . w a i t f o r r e s u l t ( )
143

144 # Check i f the ac t i on succeeded
145 i f s e l f . n a v i g a t e t o c l i e n t . g e t s t a t e ( ) == GoalStatus .

SUCCEEDED:
146 rospy . l o g i n f o ( f ”NavigateTo {waypoint} ac t i on succeeded ” )
147 l a t e s t wo r l d ob j e c t s msg = rospy . wa i t f o r mes sage (
148 ”/ spot / wor l d ob j e c t s ” , WorldObjectArray
149 )
150 l a t e s t f i d u c i a l = s e l f . e x t r a c t f i d u c i a l s (

l a t e s t wo r l d ob j e c t s msg )
151 i f waypoint in s e l f . waypo i n t f i du c i a l :
152 s e l f . waypo i n t f i du c i a l [ waypoint ] . append (

l a t e s t f i d u c i a l )
153 else :
154 s e l f . waypo i n t f i du c i a l [ waypoint ] = [ l a t e s t f i d u c i a l ]
155

156 # Publ ish to the / spot /nav/ reached waypoint t op i c
157 s e l f . reached waypoint pub . pub l i sh ( waypoint )
158 time . s l e e p ( 0 . 5 )
159

160 def e x t r a c t f i d u c i a l s ( s e l f , msg : WorldObjectArray ) −> typing . L i s t [ ”
F iduc i a l ” ] :

161 s e l f . wo r l d ob j e c t s : typing . L i s t [ WorldObject ] = msg . wo r l d ob j e c t s
162 f i d u c i a l l i s t = [ ]
163

164 # I t e r a t e through the f i d u c i a l s in the message , append the x , y , z
coo rd ina t e s to a d i c t i ona ry

165 f o r wor ld ob j e c t in s e l f . wo r l d ob j e c t s :
166 a p r i l t a g : Apr i lTagPropert i e s = wor ld ob j e c t .

a p r i l t a g p r o p e r t i e s
167 l a t e s t s n ap sho t : FrameTreeSnapshot = wor ld ob j e c t .

f r ame t r e e snapsho t
168

169 # Check i f a p r i l t a g i s None
170 i f a p r i l t a g i s None :
171 continue
172

173 # Create the FrameTreeSnapshot as a d i c t i ona ry
174 f r ame t r e e snapsho t : typing . Dict [ s t r , PoseStamped ] = {}
175 f o r ch i ld , parent edge in z ip (
176 l a t e s t s n ap sho t . ch i l d edge s , l a t e s t s n ap sho t . parent edges
177 ) :
178 parent edge t rans fo rm = PoseStamped ( )
179 parent edge t rans fo rm . header . stamp = wor ld ob j e c t .

a c qu i s i t i o n t ime
180 parent edge t rans fo rm . header . f rame id = parent edge .

parent frame name
181 parent edge t rans fo rm . pose = parent edge .

pa r en t t f o rm ch i l d
182

183 f r ame t r e e snapsho t [ c h i l d ] = parent edge t rans fo rm
184
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185 # Use t f 2 to get the a p r i l t a g pose in the body frame
186 a p r i l t a g p o s e = f rame t r e e snapsho t [ f ” f i d u c i a l { a p r i l t a g .

t a g i d }” ]
187 a p r i l t a g p o s e f i l t e r e d = f rame t r e e snapsho t [
188 f ” f i l t e r e d f i d u c i a l { a p r i l t a g . t a g i d }”
189 ]
190

191 # Build the a p r i l t a g in to the F iduc i a l c l a s s
192 f i d u c i a l = F iduc i a l (
193 t a g i d=ap r i l t a g . tag id ,
194 dim x=ap r i l t a g . x ,
195 dim y=ap r i l t a g . y ,
196 f i d u c i a l p o s e=ap r i l t a g po s e ,
197 f i l t e r e d f i d u c i a l p o s e=a p r i l t a g p o s e f i l t e r e d ,
198 pose cova r i ance=ap r i l t a g . d e t e c t i on cova r i anc e ,
199 pose covar i ance f r ame=ap r i l t a g .

d e t e c t i o n c ova r i an c e r e f e r e n c e f r ame ,
200 )
201

202 # Append the f i d u c i a l to the l i s t
203 f i d u c i a l l i s t . append ( f i d u c i a l )
204

205 return f i d u c i a l l i s t
206

207 def s ta r tup ( s e l f ) :
208 rospy . l o g i n f o ( ”SpotNav robot s t a r t i n g up” )
209

210 # Cal l the / spot / claim , / spot /power on , / spot / stand s e r v i c e
211 s e l f . c a l l s e r v i c e ( ”/ spot / c la im” , TriggerRequest ( ) )
212 s e l f . c a l l s e r v i c e ( ”/ spot /power on” , TriggerRequest ( ) )
213

214 def shutdown ( s e l f ) :
215 rospy . l o g i n f o ( ”SpotNav node shut t ing down” )
216

217 # Save the f i d u c i a l s to a p i c k l e f i l e
218 with open ( f ” f i d u c i a l s s e e n . p i c k l e { time . time ( ) }” , ”wb” ) as f :
219 p i c k l e . dump( s e l f . f i d u c i a l s s e e n , f )
220 with open ( f ” waypo i n t f i du c i a l . p i c k l e { time . time ( ) }” , ”wb” ) as f :
221 p i c k l e . dump( s e l f . waypo in t f i duc i a l , f )
222

223 # Cal l the / spot / s i t , / spot / power o f f , / spot / r e l e a s e s e r v i c e
224 s e l f . c a l l s e r v i c e ( ”/ spot / s i t ” , Tr iggerRequest ( ) )
225 s e l f . c a l l s e r v i c e ( ”/ spot / power o f f ” , Tr iggerRequest ( ) )
226 s e l f . c a l l s e r v i c e ( ”/ spot / r e l e a s e ” , TriggerRequest ( ) )
227

228 def main ( s e l f ) :
229 rospy . i n i t n od e ( ” spot nav ” , anonymous=True )
230

231 s e l f . r a t e s = rospy . get param ( ”˜ r a t e s ” , {})
232 i f ” l oop f r equency ” in s e l f . r a t e s :
233 l o op r a t e = s e l f . r a t e s [ ” l oop f r equency ” ]
234 else :
235 l o op r a t e = 50
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236

237 # I n i t i a l i z e the node
238 r a t e = rospy . Rate ( l o op r a t e )
239 rospy . l o g i n f o ( ”SpotNav node s t a r t ed ” )
240

241 s e l f . i n i t i a l i z e s u b s c r i b e r s ( )
242 s e l f . i n i t i a l i z e p u b l i s h e r s ( )
243 s e l f . i n i t i a l i z e a c t i o n c l i e n t s ( )
244

245 rospy . on shutdown ( s e l f . shutdown )
246

247 # Walk the cur rent graph
248 s e l f . s ta r tup ( )
249 s e l f . wa lk current graph ( )
250

251 while not rospy . i s shutdown ( ) :
252 r a t e . s l e e p ( )
253

254

255 i f name == ” main ” :
256 spot nav = SpotNav ( )
257 spot nav . main ( )
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D RTABMap

D.1 Launch file used to run RTABMap with SpotROS

1 <launch>
2 < !−− Spot camera names −−>
3 <arg name=”camera name1” default=” f r o n t l e f t ” />
4 <arg name=”camera name2” default=” f r o n t r i g h t ” />
5 <arg name=”camera name3” default=” l e f t ” />
6 <arg name=”camera name4” default=” r i gh t ” />
7 <arg name=”camera name5” default=”back” />
8

9 < !−− Common frame name −−>
10 <arg name=”master frame ” default=”body” />
11

12 < !−− sync rgb/depth images per camera −−>
13 <group ns=” $( arg camera name1 ) ”>
14 <node pkg=” node l e t ” type=” node l e t ” name=” rgbd sync ” args=”

standa lone rtabmap ros / rgbd sync camera1 nodelet manager ”>
15 <remap from=”rgb/ image” to=”/ spot /camera/ f r o n t l e f t /

image”/>
16 <remap from=”depth/ image” to=”/ spot /depth/ f r o n t l e f t /

d ep t h i n v i s u a l ”/>
17 <remap from=”rgb/ camera in fo ” to=”/ spot /camera/ f r o n t l e f t /

camera in fo ”/>
18 </node>
19 </group>
20

21 <group ns=” $( arg camera name2 ) ”>
22 <node pkg=” node l e t ” type=” node l e t ” name=” rgbd sync ” args=”

standa lone rtabmap ros / rgbd sync camera2 nodelet manager ”>
23 <remap from=”rgb/ image” to=”/ spot /camera/ f r o n t r i g h t /

image”/>
24 <remap from=”depth/ image” to=”/ spot /depth/ f r o n t r i g h t /

d ep th i n v i s u a l ”/>
25 <remap from=”rgb/ camera in fo ” to=”/ spot /camera/ f r o n t r i g h t /

camera in fo ”/>
26 </node>
27 </group>
28

29 <group ns=” $( arg camera name3 ) ”>
30 <node pkg=” node l e t ” type=” node l e t ” name=” rgbd sync ” args=”

standa lone rtabmap ros / rgbd sync camera3 nodelet manager ”>
31 <remap from=”rgb/ image” to=”/ spot /camera/ l e f t / image”/

>
32 <remap from=”depth/ image” to=”/ spot /depth/ l e f t /

d ep t h i n v i s u a l ”/>
33 <remap from=”rgb/ camera in fo ” to=”/ spot /camera/ l e f t /

camera in fo ”/>
34 </node>
35 </group>
36

37 <group ns=” $( arg camera name4 ) ”>
38 <node pkg=” node l e t ” type=” node l e t ” name=” rgbd sync ” args=”
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s tanda lone rtabmap ros / rgbd sync camera4 nodelet manager ”>
39 <remap from=”rgb/ image” to=”/ spot /camera/ r i g h t / image”

/>
40 <remap from=”depth/ image” to=”/ spot /depth/ r i gh t /

d ep th i n v i s u a l ”/>
41 <remap from=”rgb/ camera in fo ” to=”/ spot /camera/ r i g h t /

camera in fo ”/>
42 </node>
43 </group>
44

45 <group ns=” $( arg camera name5 ) ”>
46 <node pkg=” node l e t ” type=” node l e t ” name=” rgbd sync ” args=”

standa lone rtabmap ros / rgbd sync camera5 nodelet manager ”>
47 <remap from=”rgb/ image” to=”/ spot /camera/back/ image”/

>
48 <remap from=”depth/ image” to=”/ spot /depth/back/

d ep th i n v i s u a l ”/>
49 <remap from=”rgb/ camera in fo ” to=”/ spot /camera/back/

camera in fo ”/>
50 </node>
51 </group>
52

53 < !−− Launch rtabmap node −−>
54 <arg name=” s t r a t egy ” default=”0” />
55 <arg name=” f e a tu r e ” default=”6” />
56 <arg name=”nn” default=”3” />
57 <arg name=”max depth” default=” 4 .0 ” />
58 <arg name=” m i n i n l i e r s ” default=”20” />
59 <arg name=” i n l i e r d i s t a n c e ” default=” 0.02 ” />
60 <arg name=” loca l map ” default=”1000” />
61 <arg name=” odom info data ” default=” true ” />
62 <arg name=”wa i t f o r t r an s f o rm ” default=” true ” />
63

64 <node name=”rtabmap” pkg=” rtabmap ros ” type=”rtabmap” output=” sc r e en ”
args=”−−d e l e t e db on s t a r t ”>

65

66 < !−− Set the f rame id and the camera number . −−>
67 <param name=” frame id ” type=” s t r i n g ” value=” $( arg master frame ) ”/>
68 <param name=” rgbd cameras ” type=” in t ” value=”5”/>
69

70 < !−− Subscr ibe to t op i c s −−>
71 <param name=” subsc r ibe depth ” type=”bool ” va lue=” f a l s e ”/>
72 <param name=” subsc r ib e rgbd ” type=”bool ” va lue=” true ”/>
73 <param name=” sub s c r i b e r gb ” type=”bool ” value=” f a l s e ”/>
74 <param name=” sub s c r i b e s c an c l oud ” type=”bool ” va lue=” true ”/>
75

76 <remap from=”odom” to=”/ spot /odometry”/>
77 <remap from=”rgbd image0” to=”/$( arg camera name1 ) / rgbd image

”/>
78 <remap from=”rgbd image1” to=”/$( arg camera name2 ) / rgbd image

”/>
79 <remap from=”rgbd image2” to=”/$( arg camera name3 ) / rgbd image

”/>
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80 <remap from=”rgbd image3” to=”/$( arg camera name4 ) / rgbd image
”/>

81 <remap from=”rgbd image4” to=”/$( arg camera name5 ) / rgbd image
”/>

82

83 <remap from=” scan c loud ” to=”/ spot / l i d a r / po in t s ”/>
84 <param name=” queue s i z e ” type=” in t ” value=”100”/>
85

86 < !−− RTAB−Map ’ s parameters −−>
87 <param name=”RGBD/NeighborLinkRef in ing ” type=”s t r i n g ” value=”true

”/>
88 <param name=”RGBD/ProximityBySpace” type=”s t r i n g ” value=”true

”/>
89 <param name=”RGBD/AngularUpdate” type=”s t r i n g ” value

=”0.01”/>
90 <param name=”RGBD/LinearUpdate ” type=”s t r i n g ” value

=”0.01”/>
91 <param name=”RGBD/OptimizeFromGraphEnd” type=”s t r i n g ” value=” f a l s e

”/>
92 <param name=”Grid/ Sensor ” type=”s t r i n g ” value=” f a l s e

”/> <!−− occupancy g r id from l i d a r −−>
93 <param name=”Reg/Force3DoF” type=”s t r i n g ” value=”true

”/>
94

95 <param name=”Reg/ Strategy ” type=”s t r i n g ” value=”1”/>
<!−− 1=ICP −−>

96

97 <!−− Reg/ Strategy=0 : a l l t rans forms are computed with only v i s u a l
f e a t u r e s

98 Reg/ Strategy=1 : loop c l o s u r e i s computed with v i sua l−>i cp ( v i s u a l
g i v e s the rough guess to ICP) , but proximity de t e c t i on and
neighbor r e f i n i n g are ICP only based on guess from odometry .

99 Reg/ Strategy=2 : loop c l o su re , proximity de t e c t i on and neighbot
r e f i n i n g are computed with v i sua l−>i cp ( v i s u a l g i v e s the rough
guess to ICP) −−>

100

101 <param name=”Optimizer / Strategy ” type=”s t r i n g ” value=”1”/> <!−− g2o
=1, GTSAM=2 −−>

102 <param name=”Optimizer /Robust” type=”s t r i n g ” value=”true”/>
103 <param name=”RGBD/OptimizeMaxError” type=”s t r i n g ” value=”0”/> <!−−

should be 0 i f RGBD/OptimizeRobust i s t rue −−>
104 <param name=”RGBD/ProximityPathMaxNeighbors” type=”s t r i n g ” value

=”1”/>
105

106 <!−− ICP parameters −−>
107 <param name=”Icp /Voxe lS ize ” type=”s t r i n g ” value

=”0.05”/>
108 <param name=”Icp /MaxCorrespondenceDistance” type=”s t r i n g ” value

=”0.1”/>
109 </node>
110

111 <node pkg=”rtabmap ros ” type=”rtabmapviz ” name=”rtabmapviz ” args=”−d
$( f i nd rtabmap ros ) / launch/ con f i g / rgbd gui . i n i ” output=”sc r e en”>
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112 <param name=”frame id ” type=”s t r i n g ” value=”$( arg
master frame )”/>

113 <param name=”rgbd cameras ” type=”in t ” value=”5”/>
114 <param name=”subsc r ibe depth ” type=”bool ” va lue=” f a l s e ”/>
115 <param name=”subsc r ib e rgbd ” type=”bool ” va lue=”true”/>
116 <param name=”sub s c r i b e r gb ” type=”bool ” value=” f a l s e ”/>
117 <param name=”sub s c r i b e s c an c l oud ” type=”bool ” va lue=”true”/>
118

119 <remap from=”odom” to=”/spot /odometry”/>
120 <remap from=”rgbd image0” to=”/$( arg camera name1 ) /

rgbd image”/>
121 <remap from=”rgbd image1” to=”/$( arg camera name2 ) /

rgbd image”/>
122 <remap from=”rgbd image2” to=”/$( arg camera name3 ) /

rgbd image”/>
123 <remap from=”rgbd image3” to=”/$( arg camera name4 ) /

rgbd image”/>
124 <remap from=”rgbd image4” to=”/$( arg camera name5 ) /

rgbd image”/>
125 <remap from=”scan c loud ” to=”/spot / l i d a r / po in t s ”/>
126

127 <param name=”queue s i z e ” type=”in t ” value=”10”/>
128

129 <!−− RTAB−Map ’ s parameters −−>
130 <param name=”RGBD/NeighborLinkRef in ing ” type=” s t r i n g ” value=” true

”/>
131 <param name=”RGBD/ProximityBySpace” type=” s t r i n g ” value=” true

”/>
132 <param name=”RGBD/AngularUpdate” type=” s t r i n g ” value=” 0 .01

”/>
133 <param name=”RGBD/LinearUpdate ” type=” s t r i n g ” value=” 0 .01

”/>
134 <param name=”RGBD/OptimizeFromGraphEnd” type=” s t r i n g ” value=”

f a l s e ”/>
135 <param name=”Grid/ Sensor ” type=” s t r i n g ” value=”

f a l s e ”/> < !−− occupancy g r id from l i d a r −−>
136 <param name=”Reg/Force3DoF” type=” s t r i n g ” value=” true

”/>
137

138 <param name=”Reg/ Strategy ” type=” s t r i n g ” value=”1”/>
< !−− 1=ICP −−>

139 </node>
140

141 </ launch>

D.2 Static transformations used to run RTAB-Map with multiple cameras and
LIDAR

1 t rans forms :
2 −
3 header :
4 seq : 0
5 stamp :
6 s e c s : 1679301766
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7 nsec s : 540450967
8 f rame id : ”odom”
9 c h i l d f r ame i d : ” s en s o r o r i g i n v e l odyne−point−c loud ”

10 trans form :
11 t r a n s l a t i o n :
12 x : 0 . 0
13 y : 0 . 0
14 z : 0 . 0
15 r o t a t i on :
16 x : 0 . 0
17 y : 0 . 0
18 z : 0 . 0
19 w: 1 .0
20 −
21 header :
22 seq : 0
23 stamp :
24 s e c s : 1679301766
25 nsec s : 540450967
26 f rame id : ”body”
27 c h i l d f r ame i d : ” s enso r ”
28 trans form :
29 t r a n s l a t i o n :
30 x : −0.20249999999999999
31 y : 5.889326457099621 e−17
32 z : 0.15140000000000006
33 r o t a t i on :
34 x : −1.2246467991473532e−16
35 y : 1.2246467991473532 e−16
36 z : −1.2246467991473532e−16
37 w: 1 .0
38 −
39 header :
40 seq : 0
41 stamp :
42 s e c s : 1679301766
43 nsec s : 566367552
44 f rame id : ”body”
45 c h i l d f r ame i d : ”head”
46 trans form :
47 t r a n s l a t i o n :
48 x : 0 . 0
49 y : 0 . 0
50 z : 0 . 0
51 r o t a t i on :
52 x : 0 . 0
53 y : 0 . 0
54 z : 0 . 0
55 w: 1 .0
56 −
57 header :
58 seq : 0
59 stamp :
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60 s e c s : 1679301766
61 nsec s : 566367552
62 f rame id : ”head”
63 c h i l d f r ame i d : ” f r o n t l e f t ”
64 trans form :
65 t r a n s l a t i o n :
66 x : 0.41584859624905335
67 y : 0.03372758931166825
68 z : 0.023396574237304735
69 r o t a t i on :
70 x : 0.15096495861025827
71 y : 0.8181056005688829
72 z : −0.2243797904925827
73 w: 0.5075101153751865
74 −
75 header :
76 seq : 0
77 stamp :
78 s e c s : 1679301766
79 nsec s : 566367552
80 f rame id : ” f r o n t l e f t ”
81 c h i l d f r ame i d : ” f r o n t l e f t f i s h e y e ”
82 trans form :
83 t r a n s l a t i o n :
84 x : 0.07395234011247184
85 y : −0.0021491004112093675
86 z : 0.0021008177206913864
87 r o t a t i on :
88 x : −0.005857619976460257
89 y : −0.01989237191822775
90 z : 0.0018884866640862738
91 w: 0.9997831842183573
92 −
93 header :
94 seq : 0
95 stamp :
96 s e c s : 1679301766
97 nsec s : 566318052
98 f rame id : ”head”
99 c h i l d f r ame i d : ” f r o n t r i g h t ”

100 trans form :
101 t r a n s l a t i o n :
102 x : 0.41574367948389285
103 y : −0.040277395005084926
104 z : 0.022765156724030566
105 r o t a t i on :
106 x : −0.14218081416413436
107 y : 0.8134772956750377
108 z : 0.22654286082264116
109 w: 0.5164471296416939
110 −
111 header :
112 seq : 0
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113 stamp :
114 s e c s : 1679301766
115 nsec s : 566318052
116 f rame id : ” f r o n t r i g h t ”
117 c h i l d f r ame i d : ” f r o n t r i g h t f i s h e y e ”
118 trans form :
119 t r a n s l a t i o n :
120 x : 0.07370037358812871
121 y : −0.002572908499647855
122 z : 0.001306228715126155
123 r o t a t i on :
124 x : −0.006640041354622794
125 y : −0.007809483919858992
126 z : −0.0024134113004908478
127 w: 0.999944547091292
128 −
129 header :
130 seq : 0
131 stamp :
132 s e c s : 1679301766
133 nsec s : 613055120
134 f rame id : ”body”
135 c h i l d f r ame i d : ”arm0 . l i nk wr1 ”
136 trans form :
137 t r a n s l a t i o n :
138 x : 0.3577354848384857
139 y : 9.638628398533882 e−06
140 z : 0 .2643103897571563
141 r o t a t i on :
142 x : −0.00015957005432197857
143 y : 0.006054385450569923
144 z : −0.0008680898384561889
145 w: 0.999981282511951
146 −
147 header :
148 seq : 0
149 stamp :
150 s e c s : 1679301766
151 nsec s : 613055120
152 f rame id : ”arm0 . l i nk wr1 ”
153 c h i l d f r ame i d : ” hand depth sensor ”
154 trans form :
155 t r a n s l a t i o n :
156 x : 0 .13495
157 y : 0 . 0
158 z : 0 .00799
159 r o t a t i on :
160 x : 0 . 0
161 y : 0.6494478914666875
162 z : 0 . 0
163 w: 0.7604060995740853
164 −
165 header :
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166 seq : 0
167 stamp :
168 s e c s : 1679301766
169 nsec s : 670493912
170 f rame id : ”arm0 . l i nk wr1 ”
171 c h i l d f r ame i d : ” hand co lo r image s enso r ”
172 trans form :
173 t r a n s l a t i o n :
174 x : 0 .13806
175 y : 0 .020205
176 z : 0 .02452
177 r o t a t i on :
178 x : −0.45922900808339967
179 y : 0.45922900808339967
180 z : −0.5376883094644489
181 w: 0.5376883094644489
182 −
183 header :
184 seq : 0
185 stamp :
186 s e c s : 1679302032
187 nsec s : 888783208
188 f rame id : ”back”
189 c h i l d f r ame i d : ” ba ck f i s h ey e ”
190 trans form :
191 t r a n s l a t i o n :
192 x : 0.07250199778049198
193 y : −0.004697571151119375
194 z : 0.0008090978989160067
195 r o t a t i on :
196 x : −0.0033799982900291742
197 y : 0.0016682267870559732
198 z : 0.003176679910507995
199 w: 0.9999878505940423
200 −
201 header :
202 seq : 0
203 stamp :
204 s e c s : 1679302032
205 nsec s : 888783208
206 f rame id : ”head”
207 c h i l d f r ame i d : ”back”
208 trans form :
209 t r a n s l a t i o n :
210 x : −0.41801409129365225
211 y : −0.0371806812178456
212 z : 0.008218024594506435
213 r o t a t i on :
214 x : 0.5601189910358034
215 y : 0.5631057792314684
216 z : −0.4350068772936583
217 w: −0.42420232670787483
218 −
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219 header :
220 seq : 0
221 stamp :
222 s e c s : 1679302032
223 nsec s : 889014208
224 f rame id : ”head”
225 c h i l d f r ame i d : ” l e f t ”
226 trans form :
227 t r a n s l a t i o n :
228 x : −0.16535957741030677
229 y : 0.10950589198696871
230 z : 0.03458287977297543
231 r o t a t i on :
232 x : −0.7987032337607332
233 y : 0.0056213543554237844
234 z : −0.013281498322848109
235 w: 0.6015522808182666
236 −
237 header :
238 seq : 0
239 stamp :
240 s e c s : 1679302032
241 nsec s : 889014208
242 f rame id : ” l e f t ”
243 c h i l d f r ame i d : ” l e f t f i s h e y e ”
244 trans form :
245 t r a n s l a t i o n :
246 x : 0.0753340587618107
247 y : −0.005158899200750513
248 z : 0.004368142951384089
249 r o t a t i on :
250 x : −0.003048791121646806
251 y : −0.020996990427553607
252 z : 0.002514693270834218
253 w: 0.9997717277376049
254 −
255 header :
256 seq : 0
257 stamp :
258 s e c s : 1679302032
259 nsec s : 888725708
260 f rame id : ” r i g h t ”
261 c h i l d f r ame i d : ” r i g h t f i s h e y e ”
262 trans form :
263 t r a n s l a t i o n :
264 x : 0.0743283221971791
265 y : −0.0033740900414505923
266 z : −0.00036247378805597495
267 r o t a t i on :
268 x : −0.004343771269245429
269 y : 0.008378798004595334
270 z : 0.0013095968884968211
271 w: 0.9999546051452277
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272 −
273 header :
274 seq : 0
275 stamp :
276 s e c s : 1679302032
277 nsec s : 888725708
278 f rame id : ”head”
279 c h i l d f r ame i d : ” r i g h t ”
280 trans form :
281 t r a n s l a t i o n :
282 x : −0.1665919503641412
283 y : −0.10984267045277182
284 z : 0.03495716058308293
285 r o t a t i on :
286 x : 0.7939795031519209
287 y : −0.015558628460717615
288 z : −0.00224339791148875
289 w: 0.6077412647014031
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D.3 RTAB-Map publishers

Table D.1: RTAB-Map output publishers [51]

Topic Type Description

info rtabmap ros/Info RTAB-Map’s info.
mapData rtabmap ros/MapData RTAB-Map’s graph and latest node data.
mapGraph rtabmap ros/MapGraph RTAB-Map’s graph only.
grid map nav msgs/OccupancyGrid Occupancy grid generated with laser scans
cloud map sensor msgs/PointCloud2 3D point cloud generated from the assembled local grids
cloud obstacles sensor msgs/PointCloud2 3D point cloud of obstacles generated from the assembled local grids
cloud ground sensor msgs/PointCloud2 3D point cloud of ground generated from the assembled local grids.
scan map sensor msgs/PointCloud2 3D point cloud generated with the 2D scans or 3D scans
labels visualization msgs/MarkerArray Convenient way to show graph’s labels in RVIZ.
global path nav msgs/Path Poses of the planned global path. Published only once for each path planned.
local path nav msgs/Path Upcoming local poses corresponding to those of the global path. Published on every map update.
goal reached std msgs/Bool Status message if the goal is successfully reached or not.
goal out geometry msgs/PoseStamped Current metric goal sent from the rtabmap’s topological planner.
octomap full octomap msgs/Octomap Get an OctoMap. Available only with octomap.
octomap binary octomap msgs/Octomap Get an OctoMap. Available only with octomap.
octomap occupied space sensor msgs/PointCloud2 A point cloud of the occupied space of the OctoMap. Available only with octomap.
octomap obstacles sensor msgs/PointCloud2 A point cloud of the obstacles of the OctoMap. Available only with octomap.
octomap ground sensor msgs/PointCloud2 A point cloud of the ground of the OctoMap. Available only with octomap.
octomap empty space sensor msgs/PointCloud2 A point cloud of empty space of the OctoMap. Available only with octomap.
octomap grid nav msgs/OccupancyGrid The projection of the OctoMap into a 2D occupancy grid map. Available with octomap.
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D.4 RTAB-Map subscriptions

Table D.2: RTAB-Map subscriptions

Topic Type Description

/spot/odometry nav msgs/Odometry Robot odometry data
/spot/camera/frontleft/image sensor msgs/Image Mono image data
/spot/camera/frontleft/camera info sensor msgs/CameraInfo Camera metadata
/spot/camera/frontright/image sensor msgs/Image Mono image data
/spot/camera/frontright/camera info sensor msgs/CameraInfo Camera metadata
/spot/camera/left/image sensor msgs/Image Mono image data
/spot/camera/left/camera info sensor msgs/CameraInfo Camera metadata
/spot/camera/right/image sensor msgs/Image Mono image data
/spot/camera/right/camera info sensor msgs/CameraInfo Camera metadata
/spot/camera/back/image sensor msgs/Image Mono image data
/spot/camera/back/camera info sensor msgs/CameraInfo Camera metadata
/spot/depth/frontleft/image sensor msgs/Image Depth image data
/spot/depth/frontright/image sensor msgs/Image Depth image data
/spot/depth/left/image sensor msgs/Image Depth image data
/spot/depth/right/image sensor msgs/Image Depth image data
/spot/depth/back/image sensor msgs/Image Depth image data
/spot/lidar/points sensor msgs/PointCloud2 Laser scan point cloud stream
/frontleft/rgbd image rtabmap ros/RGBDImage Synchronised RGBD image from Nodelets
/frontright/rgbd image rtabmap ros/RGBDImage Synchronised RGBD image from Nodelets
/left/rgbd image rtabmap ros/RGBDImage Synchronised RGBD image from Nodelets
/right/rgbd image rtabmap ros/RGBDImage Synchronised RGBD image from Nodelets
/back/rgbd image rtabmap ros/RGBDImage Synchronised RGBD image from Nodelets
/tag detections apriltag ros/AprilTagDetectionArray Apply AprilTag constraints
/imu sensor msgs/Imu [Unused] Apply gravity constraints
/gps/fix sensor msgs/NavSatFix [Unused] Apply GPS constraints
/global pose geometry msgs/PoseWithCovarianceStamped [Unused] Apply global prior constraints
/fiducial transforms fiducial msgs/FiducialTransformArray [Unused] Apply fiducial constraints
/goal geometry msgs/PoseStamped Plan a path to reach this goal using the current online map
/initialpose geometry msgs/PoseStamped Set initial pose of the robot
/tf tf2 msgs/TFMessage Reference frame transforms
/tf static tf2 msgs/TFMessage Reference frame transforms
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D.5 RTAB-Map services

Table D.3: RTAB-Map services

Topic Type Description

get map nav msgs/GetMap Get the standard 2D occupancy grid
get map data rtabmap ros/GetMap Get the RTAB-Map map data
publish map rtabmap ros/PublishMap Call this service to publish the map data
list labels rtabmap ros/ListLabels Get current labels of the graph
update parameters std srvs/Empty The node will update with current parameters of the rosparam server
reset std srvs/Empty Delete the map
pause std srvs/Empty Pause mapping
resume std srvs/Empty Resume mapping
trigger new map std srvs/Empty Begin a new map
backup std srvs/Empty Backup the database to ~/.ros/rtabmap.db.back

set mode localization std srvs/Empty Set localization mode
set mode mapping std srvs/Empty Set mapping mode
set label rtabmap ros/SetLabel Set a label to latest node or a specified node
set goal rtabmap ros/SetGoal Set a goal to plan a path to, navigate with move base
octomap full octomap msgs/GetOctomap Get an Octomap
octomap binary octomap msgs/GetOctomap Get an Octomap
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E GraphNav Door Opening ROS Node

1 #!/ usr /bin /env python3
2 import typing
3 import p i c k l e
4 import time
5

6 import rospy
7 import a c t i o n l i b
8 from a c t i on l i b msg s .msg import GoalStatus
9 from r o s s e r v i c e import g e t s e r v i c e c l a s s by name

10 from spot msgs . s rv import (
11 ArmJointMovement ,
12 ArmJointMovementResponse ,
13 ArmJointMovementRequest ,
14 )
15 from spot msgs .msg import (
16 TrajectoryAct ion ,
17 TrajectoryResu l t ,
18 TrajectoryFeedback ,
19 TrajectoryGoal ,
20 )
21

22 from std msgs .msg import St r ing
23 from geometry msgs .msg import PoseStamped
24 from spot msgs .msg import Apri lTagPropert ies , WorldObjectArray ,

WorldObject
25 from spot msgs .msg import FrameTreeSnapshot , ParentEdge
26 from spot msgs . s rv import NavigateIn i tRequest , NavigateIn i tResponse
27 from spot msgs .msg import NavigateToAction , NavigateToGoal
28 from spot msgs . s rv import ListGraphResponse
29 from s t d s r v s . s rv import TriggerRequest
30

31 from f i d u c i a l import F iduc i a l
32

33

34 class SpotDoorDemo :
35 def i n i t ( s e l f ) :
36 s e l f . wo r l d ob j e c t s = None
37 s e l f . f i d u c i a l s s e e n : typing . Dict [ int , typing . L i s t [ ” F iduc i a l ” ] ] =

{}
38 s e l f . waypo i n t f i du c i a l : typing . Dict [ s t r , typing . L i s t [ ” F iduc i a l ” ] ]

= {}
39

40 def i n i t i a l i z e s u b s c r i b e r s ( s e l f ) :
41 ””” I n i t i a l i z e ROS sub s c r i b e r s ”””
42 pass
43

44 def i n i t i a l i z e p u b l i s h e r s ( s e l f ) :
45 ””” I n i t i a l i z e ROS pub l i s h e r s ”””
46 s e l f . reached waypoint pub = rospy . Pub l i she r (
47 ”/ spot /nav/ reached waypoint ” , Str ing , queue s i z e=1
48 )
49

70



50 def i n i t i a l i z e a c t i o n c l i e n t s ( s e l f ) :
51 ””” I n i t i a l i z e ROS act i on c l i e n t s ”””
52 # Create an ac t i on c l i e n t f o r the / spot / nav i ga t e t o ac t i on
53 s e l f . n a v i g a t e t o c l i e n t = a c t i o n l i b . S impleAct ionCl ient (
54 ”/ spot / nav i ga t e t o ” , NavigateToAction
55 )
56

57 def c a l l s e r v i c e ( s e l f , s e rv ice name : s t r , ∗ args , ∗∗kwargs ) :
58 ””” Cal l a s e r v i c e and wait f o r i t to be a v a i l a b l e ”””
59 try :
60 rospy . w a i t f o r s e r v i c e ( serv ice name )
61 s e r v i c e t yp e = ge t s e r v i c e c l a s s by name ( serv ice name )
62 proxy = rospy . Serv iceProxy ( serv ice name , s e r v i c e t yp e )
63 return proxy (∗ args , ∗∗kwargs )
64

65 except rospy . Serv i ceExcept ion as e :
66 rospy . l o g e r r ( ” Se rv i c e c a l l f a i l e d : %s ” % e )
67

68 def walk current graph ( s e l f ) :
69 ”””Walk the cur rent graph in GraphNav”””
70 rospy . l o g i n f o ( ”Walking the cur rent graph” )
71

72 # Cal l the / spot / n a v i g a t e i n i t s e r v i c e
73 req = Navigate In i tRequest (
74 upload path=”/home/ming/Desktop/ catk in ws / t e s t d a t a /door demo

” ,
75 i n i t i a l l o c a l i z a t i o n f i d u c i a l=True ,
76 i n i t i a l l o c a l i z a t i o n w a y p o i n t=”np” ,
77 )
78 re sp = s e l f . c a l l s e r v i c e ( ”/ spot / n a v i g a t e i n i t ” , req )
79

80 # Check i f the ac t i on succeeded
81 i f re sp . su c c e s s :
82 rospy . l o g i n f o ( re sp . message )
83

84 # Cal l the ListGraph s e r v i c e
85 l i s t g r a p h : ListGraphResponse = s e l f . c a l l s e r v i c e ( ”/ spot /

l i s t g r a p h ” )
86 waypoints = l i s t g r a p h . waypo int ids
87 s t a r t , end = waypoints [ 0 ] , waypoints [−1]
88

89 nav i g a t e t o g oa l = NavigateToGoal ( nav i ga t e t o=end )
90 s e l f . n a v i g a t e t o c l i e n t . s end goa l ( n av i g a t e t o g oa l )
91 s e l f . n a v i g a t e t o c l i e n t . w a i t f o r r e s u l t ( )
92

93 # Check i f the ac t i on succeeded
94 i f s e l f . n a v i g a t e t o c l i e n t . g e t s t a t e ( ) == GoalStatus .SUCCEEDED:
95 rospy . l o g i n f o ( f ”NavigateTo {end} ac t i on succeeded ” )
96

97 # Press button
98 s e l f . move arm ( )
99

100 # Go back to s t a r t po int
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101 nav i g a t e t o g oa l = NavigateToGoal ( nav i ga t e t o=s t a r t )
102 s e l f . n a v i g a t e t o c l i e n t . s end goa l ( n av i g a t e t o g oa l )
103 s e l f . n a v i g a t e t o c l i e n t . w a i t f o r r e s u l t ( )
104

105 def e x t r a c t f i d u c i a l s ( s e l f , msg : WorldObjectArray ) −> typing . L i s t [ ”
F iduc i a l ” ] :

106 s e l f . wo r l d ob j e c t s : typing . L i s t [ WorldObject ] = msg . wo r l d ob j e c t s
107 f i d u c i a l l i s t = [ ]
108

109 # I t e r a t e through the f i d u c i a l s in the message , append the x , y , z
coo rd ina t e s to a d i c t i ona ry

110 f o r wor ld ob j e c t in s e l f . wo r l d ob j e c t s :
111 a p r i l t a g : Apr i lTagPropert i e s = wor ld ob j e c t .

a p r i l t a g p r o p e r t i e s
112 l a t e s t s n ap sho t : FrameTreeSnapshot = wor ld ob j e c t .

f r ame t r e e snapsho t
113

114 # Check i f a p r i l t a g i s None
115 i f a p r i l t a g i s None :
116 continue
117

118 # Create the FrameTreeSnapshot as a d i c t i ona ry
119 f r ame t r e e snapsho t : typing . Dict [ s t r , PoseStamped ] = {}
120 f o r ch i ld , parent edge in z ip (
121 l a t e s t s n ap sho t . ch i l d edge s , l a t e s t s n ap sho t . parent edges
122 ) :
123 parent edge t rans fo rm = PoseStamped ( )
124 parent edge t rans fo rm . header . stamp = wor ld ob j e c t .

a c qu i s i t i o n t ime
125 parent edge t rans fo rm . header . f rame id = parent edge .

parent frame name
126 parent edge t rans fo rm . pose = parent edge .

pa r en t t f o rm ch i l d
127

128 f r ame t r e e snapsho t [ c h i l d ] = parent edge t rans fo rm
129

130 # Use t f 2 to get the a p r i l t a g pose in the body frame
131 a p r i l t a g p o s e = f rame t r e e snapsho t [ f ” f i d u c i a l { a p r i l t a g .

t a g i d }” ]
132 a p r i l t a g p o s e f i l t e r e d = f rame t r e e snapsho t [
133 f ” f i l t e r e d f i d u c i a l { a p r i l t a g . t a g i d }”
134 ]
135

136 # Build the a p r i l t a g in to the F iduc i a l c l a s s
137 f i d u c i a l = F iduc i a l (
138 t a g i d=ap r i l t a g . tag id ,
139 dim x=ap r i l t a g . x ,
140 dim y=ap r i l t a g . y ,
141 f i d u c i a l p o s e=ap r i l t a g po s e ,
142 f i l t e r e d f i d u c i a l p o s e=a p r i l t a g p o s e f i l t e r e d ,
143 pose cova r i ance=ap r i l t a g . d e t e c t i on cova r i anc e ,
144 pose covar i ance f r ame=ap r i l t a g .

d e t e c t i o n c ova r i an c e r e f e r e n c e f r ame ,
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145 )
146

147 # Append the f i d u c i a l to the l i s t
148 f i d u c i a l l i s t . append ( f i d u c i a l )
149

150 return f i d u c i a l l i s t
151

152 def move arm( s e l f ) :
153 l a t e s t wo r l d ob j e c t s msg = rospy . wa i t f o r mes sage (
154 ”/ spot / wor l d ob j e c t s ” , WorldObjectArray
155 )
156 f i d u c i a l s = s e l f . e x t r a c t f i d u c i a l s ( l a t e s t wo r l d ob j e c t s msg )
157 with open ( f ” e n d f i d u c i a l . p i c k l e { time . time ( ) }” , ”wb” ) as f :
158 p i c k l e . dump( f i d u c i a l s , f )
159

160 ang le = 1 .6
161 req = ArmJointMovementRequest ( j o i n t t a r g e t =[−0.2 , −angle , angle ,

0 . 0 , 0 . 0 , 0 . 0 ] )
162 s e l f . c a l l s e r v i c e ( ”/ spot / arm carry ” , TriggerRequest ( ) )
163 s e l f . c a l l s e r v i c e ( ”/ spot / arm joint move ” , req )
164

165 time . s l e e p (1 )
166 s e l f . c a l l s e r v i c e ( ”/ spot /arm stow” , TriggerRequest ( ) )
167

168 def s ta r tup ( s e l f ) :
169 rospy . l o g i n f o ( ”SpotNav robot s t a r t i n g up” )
170

171 # Cal l the / spot / claim , / spot /power on , / spot / stand s e r v i c e
172 s e l f . c a l l s e r v i c e ( ”/ spot / c la im” , TriggerRequest ( ) )
173 s e l f . c a l l s e r v i c e ( ”/ spot /power on” , TriggerRequest ( ) )
174

175 def shutdown ( s e l f ) :
176 rospy . l o g i n f o ( ”SpotNav node shut t ing down” )
177

178 # Save the f i d u c i a l s to a p i c k l e f i l e
179 with open ( f ” f i d u c i a l s s e e n . p i c k l e { time . time ( ) }” , ”wb” ) as f :
180 p i c k l e . dump( s e l f . f i d u c i a l s s e e n , f )
181 with open ( f ” waypo i n t f i du c i a l . p i c k l e { time . time ( ) }” , ”wb” ) as f :
182 p i c k l e . dump( s e l f . waypo in t f i duc i a l , f )
183

184 # Cal l the / spot / s i t , / spot / power o f f , / spot / r e l e a s e s e r v i c e
185 s e l f . c a l l s e r v i c e ( ”/ spot / s i t ” , Tr iggerRequest ( ) )
186 time . s l e e p (5 )
187 s e l f . c a l l s e r v i c e ( ”/ spot / power o f f ” , Tr iggerRequest ( ) )
188 s e l f . c a l l s e r v i c e ( ”/ spot / r e l e a s e ” , TriggerRequest ( ) )
189

190 def main ( s e l f ) :
191 rospy . i n i t n od e ( ” spot nav ” , anonymous=True )
192

193 s e l f . r a t e s = rospy . get param ( ”˜ r a t e s ” , {})
194 i f ” l oop f r equency ” in s e l f . r a t e s :
195 l o op r a t e = s e l f . r a t e s [ ” l oop f r equency ” ]
196 else :
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197 l o op r a t e = 50
198

199 # I n i t i a l i z e the node
200 r a t e = rospy . Rate ( l o op r a t e )
201 rospy . l o g i n f o ( ”SpotNav node s t a r t ed ” )
202

203 s e l f . i n i t i a l i z e s u b s c r i b e r s ( )
204 s e l f . i n i t i a l i z e p u b l i s h e r s ( )
205 s e l f . i n i t i a l i z e a c t i o n c l i e n t s ( )
206

207 rospy . on shutdown ( s e l f . shutdown )
208

209 # Walk the cur rent graph
210 s e l f . s ta r tup ( )
211 f o r i in range (3 ) :
212 s e l f . wa lk current graph ( )
213

214 s e l f . c a l l s e r v i c e ( ”/ spot / s i t ” , Tr iggerRequest ( ) )
215 time . s l e e p (5 )
216 s e l f . c a l l s e r v i c e ( ”/ spot / power o f f ” , Tr iggerRequest ( ) )
217 s e l f . c a l l s e r v i c e ( ”/ spot / r e l e a s e ” , TriggerRequest ( ) )
218

219 while not rospy . i s shutdown ( ) :
220 r a t e . s l e e p ( )
221

222

223 i f name == ” main ” :
224 spot nav = SpotDoorDemo ( )
225 spot nav . main ( )
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